跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭中榮
研究生(外文):CHUNG-JUNG KUO
論文名稱:阿拉伯芥FIN219抑制者的功能性研究
論文名稱(外文):Functional Studies of a putative Suppressor of Arabidopsis FIN219
指導教授:謝旭亮
指導教授(外文):Hsu-Liang Hsieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:97
中文關鍵詞:抑制者遠紅光光型態發生
外文關鍵詞:FIN219BRCPDsuppressorlight signal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
FIN219啟動子功能的研究中,利用農桿菌轉殖P219::FIN219-GUS載體到fin219 突變體。結果發現,T2世代在遠紅光的處理下,0802品系呈現非常短的下胚軸,而50個transgenic lines之中只有此品系 (0802) 具有rescued fin219 下胚軸的外表型。但轉移到白光生長卻具有非常矮小的植株,與野生型顯著不同。另外,0802品系是一個隱性突變外表型,因為T2種子在Hygromycin篩選之下,具有1/4比例為非常短小的外表型,且只有這1/4的短小幼苗對於光處理呈現hypersensitive現象,不像是正常互補之後應該有3/4比例是正常外表型。因此0802品系,很可能是T-DNA插入某一個基因造成抑制fin219突變體的外表型。而此基因很可能是FIN219的一個基因外抑制者。因此本篇論文藉由功能性研究的方式,來探討FIN219與其可能的抑制者之間的關係。經由不同光源的處理,發現0802這個品系在遠紅光中的下胚軸長度有回復成野生型的現象,並且0802品系在白光、藍光、紅光、與黑暗中亦具有hypersensitive 的短下胚軸外表型。所以0802這個品系乃是因T-DNA插入某個基因突變之後造成在遠紅光下抑制fin219突變體的外表型。利用Inverse PCR的方式將T-DNA插入位置的旁邊DNA片段分離出來,並且經由定序以及序列的比對發現,T-DNA插入在阿拉伯芥Brassinosteroid (BR) 生合成途徑CPD (Constitutive Photomorphogenesis and Dwarfism) (CYP90A1)基因的第三個intron。利用PCR與Genomic Southern Blot 方式進一步確認T-DNA的確是插入在這個位置;藉由RT-PCR的方式檢測CPD基因在0802品系中的表現發現,CPD mRNA在homozygous突變體中完全偵測不到,而在heterozygous突變體中的表現則較野生型中低。此結果顯示,很可能CPD基因的失去功能而造成0802品系在不同光源下的短小外表型。此外,利用CPD anti-sense 轉殖株的分析發現,CPD anti-sense 轉殖均可以部分的抑制fin219、fin219-null、phyA抽長的下胚軸;暗示,CPD 可能是FIN219的抑制者。另外利用FIN219啟動子與GUS報導基因的轉殖株,經由BR的處理結果發現,在黑暗處理2天轉移到遠紅光2天,BR的處理會抑制FIN219的表現。RT-PCR與Northern blot分析發現受光所調控的基因,CHS (Chalcone synthase)、RBCS (Ribulose Bisphosphate Carboxylase/oxygenase Small subunit)等,在0802品系中也會明顯的受到改變。綜合以上結果顯示CPD在光與BR訊息交互作用之中可能扮演重要角色。
A putative suppressor line 0802 of fin219 was identified from studies of FIN219 promoter activities that investigated expression patterns of fin219 transgenic seedlings harboring the construct P219::FIN219-GUS. The T2 line of 0802 exhibited a rescued hypocotyl phenotype under far-red light, had a very short (dwarf) phenotype under white light. In addition, under hygromycin selection, 1/4 hypersensitive segregation ratio is resistant and homozygous, leading to the possibility that the phenotype of 0802 was due to a T-DNA inserted in an unknown gene to suppress the long hypocotyl phenotype of fin219. To confirm this hypothesis, we focus on the cloning of the putative suppressor gene and address the relationship between FIN219 (Far-red Insensitive 219) and its putative suppressor by a functional study approach. This putative suppressor line 0802 showed a fin219-rescued phenotype under far red light, and it also exhibited a hypersensitive phenotype under white light、red light、blue light and darkness. The flanking sequence of T-DNA was amplified by an inverse-PCR approach and sequenced. It was found that the T-DNA was inserted in the 3rd intron (1784 nt) of Arabidopsis CPD (Constitutive Photomorphogenesis and Dwarfism) gene. CPD (CYP90A1) was reported as Arabidopsis brassinosteroid biosynthetic gene and belonged to cytochrome P450 super gene family. This result was confirmed by RT-PCR and genomic southern. Besides, CPD anti-sense lines could partially suppress the long hypocotyl of fin219, fin219 -null and phyA under continuous far-red light (cFR), which indicates that CPD is the suppressor of FIN219. Furthermore, FIN219 promoter activities could be reduced by Brassinosteroid (BR), 24-epi-BL. The expression analysis show that the expression of light regulated genes such as CHS (Chalcone synthase) and RBCS (Ribulose Bisphosphate Carboxylase/oxygenase Small subunit) could be altered in 0802. Taken together, CPD might play a vital role to crosstalk between BR and light signaling.
ABSTRACT……………………………………………………………………………….1
中文摘要…………………………………………………………………………………..3
INTRODUCTION…………………………………………………………………………5
1. Light and Plants………………………………………………………………….5
2. Phytochromes…………………………………………………………………..5
3. Light Signaling Pathway……………………………………………………….7
4. Brassinosteroids………………………………………………………………..8
5. Cytochrome P450………………………………………………………………9
6. The BR Biosynthetic Genes and Light Signaling…….……………………..10
7. Specific Aims……………………………………………………………………12
METHODS………………………………………………………………………………..13
1. Plant Growth Condition………………………………………………………..13
2. Inversed PCR............................................................................................13
3. Genomic Southern blot..............................................................................14
4. Plasmid Construction…………………………………………………………..15
5. Histo chemical GUS Staining………………………………………………….16
6. GUS Activity Assay……………………………………………………………..16
7. RT-PCR…………………………………………………………………………..17
8. Northern blot……………………………………………………………………..18
RESULTS………………………………………………………………………………….19
1. The Putative Suppressor Line 0802 Was Obtained From The……………19
P219::FIN219-GUS Transgenic Plants
2. 0802 Could Rescue fin219 Under Far-Red Light……………………………20
3. Molecular Cloning of the Putative Suppressor of fin219 by RT-PCR……...20
4. 0802 Exhibited Pleiotropic Dwarf Phenotypes……………………………….21
5. FIN219 Promoter Can be Repressed by BR…………………………………22
6. Suppressor Line 0802 Can Recover Target Gene Expression to the…….23
Wild-type Level
7. Continuous Red Light and Far-red Light Could down-regulated CPD……24 Expression
8. CPD is a Suppressor of FIN219………………………………………………25
DISSCUSSION…………………………………………………………………………….26
I. Definition of a Suppressor…………………………………………………………26
II. Crosstalk between light signaling and BR………………………………………28
III. The relationship between FIN219 and CPD…………………………………...29
FIGURES……………………………………………………………………………………32
REFERENCE……………………………………………………………………………….57
APPENDIX I…………………………………………………………………………………65
APPENDIX II……………………………………………………………………………..…97
REFERENCE

Ahmad, M., and Cashmore, A. R. (1993). HY4 gene of A. thaliana encodes a protein with the characteristics of a blue-light photoreceptor. Nature 366, 162-166.
Ahmad, M., Lin, C., and Cashmore, A.R. (1995). Mutations throughout an Arabidopsis blue light photoreceptor impair blue-light-responsive anthocyanin and inhibition of hypocotyls elongation. Plant J. 8, 653-658
Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1, 213–222.
Asami, T. and Yoshida S. (1999). Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 4, 348–353.
Aukerman, J.M., Hirschfeld, M., Wester, L., Weaver, M., Clack, T., Amasino, M.R., and Sharrock, A. R. (1997). A deletion in the PHYD gene of Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9, 1317–1326.
Bancos S., Nomura T., Sato T., Molna´r G., Bishop G.J., Koncz C., Yokota T., Nagy F., and Szekeres M. (2002). Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis. Plant Physiol. 130, 504-513.
Bancos S., Szatma´ A., Castle C., Kozma-Bogna´r L., Shibata K., Yokota T., Bishop G.J., Nagy F., and Szekeres M. (2006). Diurnal Regulation of the Brassinosteroid-Biosynthetic CPD Gene in Arabidopsis. Plant Physiol. 141, 299-309.
Berry-Lowe, S.L., and Meagher, R.B. (1985). Transcriptional regulation of gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean tissue is linked to the phytochrome response. Mol. Cell. Biol. 5, 1910-1917.
Bishop, G.J. and Yokota, T. (2001). Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 42, 114–120.
Birnboim, H. C. and Doly, J. (1979). A rapid alkaline procedures for screening recombinant plasmid DNA. Nucleic Acids res. 7, 1513-1523.
Botto, J.F., Sanchez, R.A., Whitelam, G.C., and Casal, J.J. (1996). Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol. 110, 439-444.
Briggs, W. R., and Christie, J.M. (2002). Phototropins 1 and 2, versatile plant blue-light receptors. Trend Plant Sci. 7, 204-210.
Briggs, W.R., and Huala, E. (1999). Blue-light photoreceptors in highter plants. Anno. Rev. Cell Dev. Biol. 15, 33-63.
Chelly, J. and Kahn, A. (1994). RT-PCR and mRNA quantification. In KB Mullis, F Ferre´, RA Gibbs. The Polymerase Chain Reaction. Birkhaぴuser, Boston, pp 97–109.
Chen, M., Chory, J. and Fankhauser, C. (2004). Light signal transduction inhigher lants. Annu Rev Genet 38, 83–117
Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S. and Feldmann, K.A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26, 573–582.
Chomczynski, P. and Mackey, K. (1994). One-hour downward capillary blotting of RNA at neutral pH. Anal. Biochem. 221, 303-305
Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyante-pheno-chlorofrom extraction. Anal. Biochem. 162, 156-159.
Chory, J., Nagpal, P. and Peto, C. (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3, 445–459
Clough, S.J. and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.
Clouse, S.D. and Sasse, J.M. (1998). Brassinosteroids: essential regulators of plant growth and development. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 427–451.
Dellaporta, S. L., Wood, J. and Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1, 19-21.
Deng, X. W., Caspar, T., and Quail, P.H. (1991). Cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5, 1172–1182.
Devlin, P.F., Halliday, K.J., Harberd, N.P., and Whitelam, G.C. (1996). The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: Novel phytochromes control internode elongation and flowering time. Plant J. 10, 1127–1134.
Devlin, P.F., Patel, S., and Whitelam, G.C. (1998). Phytochrome E
influences internode elongation and flowering time in Arabidopsis.Plant Cell 10, 1479–1488.
Devlin, P.F., Robson, P.R., Patel, S.R., Goosey, L., Sharrock, R.A., and Whitelam, G.C. (1999). Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119, 909–915.
Eichenberg, K., Baeurle, I., Paulo, N., Sharrock, R.A., Ruediger,W., and Schäfer, E. (2000). Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett. 470, 107–112.
Franklin K.A., Davis S.J., Stoddart W.M., Vierstra R.D., and Whitelam G.C. (2003). Mutant Analyses Define Multiple Roles for Phytochrome C in Arabidopsis Photomorphogenesis. Plant Cell 15, 1981–1989.
Fujioka, S., Li, J., Choi, Y.H., Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., Chory, J., and Sakurai, A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9, 1951-1962.
Fujioka, S. and Yokota, T. (2003). Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54, 137–164.
Furuya, M., and Schäfer, E. (1996). Photoperception and signaling of induction reactions by different phytochromes. Trends Plant Sci. 1, 301–307.
Grove, M.D., Spencer, G.F., Rohwedder,W.K., Mandava, N., Worley, J.F., Warthen, J.D., Jr, Steffens, G.L., Flippen-Anderson, J.L. and Cook, J. C. Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassicanapus rape pollen. Nature, 281, 216–217.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291, 487–490.
Holm, M., Ma, L.G., Qu, L.J., and Deng, X.W. (2002). Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16, 1247–1259.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14, 1958–1970.
Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. (1987). GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plant. EMBO J. 6, 3901-3907
Johnson, E., Bradley, M., Harberd, N.P., and Whitelam, G. C. (1994). Photoresponses of light-grown phyA mutants of Arabidopsis. Plant Physiol. 105, 141-149.
Kang, J. G., Yun, J., Kim, D. H., Chung, K. S., Fujioka, S., Kim, J. Il., Dae, H. W., Yoshida, S., Takatsuto, S., Song, P. S. and Park, C. M. (2001). Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell, 105, 625–636.
Kauschmann, A., Jessop, A., Koncz, C., Szekeres, M., Willmitzer, L. and Altmann, T. (1996). Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9, 701–713.
Kendrick, R.E., and Kronenberg, G.H.M. (1994). Photomorphogenesis in Higher Plants. (Dordrecht, The Netherlands: Kluwer Academic Publishers).
Kim, L., Kircher, S., Toth, R., Adam, E., Schäfer, E., and Nagy, F. (2000). Light induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis. Plant J. 22, 125–133.
Kircher, S. (2002). Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A B, C, D and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541-1555.
Koornneef, M., Rolff, E., and Spruit, C.J.P. (1980). Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100, 147–160.
Li, J. and Chory, J. (1997). Aputative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90, 929–938.
Li, J., Nagpal, P., Vitart, V., McMorris, T.C. and Chory, J. (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398–401.
Liscum, E. and Hangarter, R.P. (1991). Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation. Plant Cell, 3, 685–694.
Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H. and Deng X. W. (2001). Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13, 2589–2607.
McNellis, T.W. von Arnim, A.G., and Deng, X.W. (1994). Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6,1391-1400
Mathur, J., Molna´r, G., Fujioka, S., Takatsuto, S., Sakurai, A., Yokota, T., Adam, G., Voigt, B., Nagy, F. and Maas, C. (1998). Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J 14, 593–602.
Martinez-Garcia, J.F., Huq, E. and Quail,P.H. (2000). Direct targeting of light signaling to a promoter element-bound transcription factor. Science 288, 859-863.
Monte E., Alonso J.M., Ecker J.R., Zhang Y., Li X., Young J., Austin-Phillips S., and Quail P.H. (2003). Isolation and Characterization of phyC Mutants in Arabidopsis Reveals Complex Crosstalk between Phytochrome Signaling Pathways. Plant Cell 15, 1962–1980.
Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H., and Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18, 448-460.
Nagy, F., and Schäfer, E. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329–355.
Nagatain, A., Reed, J.W., and Chory, J. (1993). Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A . Plant Physiol. 102, 269-277.
Nagatani, A., Nakamura, M., Yokota, T., Tanaka, S. and Mochizuki, N. (1998). Light-responses of plants and phytohormones. Plant Cell Physiol 39, S-9.
Neff, M.M., Fankhauser, C., and Chory, J. (2000). Light: An indicator of time and place. Genes Dev. 14, 257-271.
Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S. and Chory, J. (1999). BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96, 15316–15323.
Neff, M.M., and Volkenburgh, E. V. (1994). Light-stimulated cotyledon expansion in Arabidopsis seedlings. Plant Physiol. 104, 1027-1032.
Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW et al. (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6,1–42.
Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a phytochrome interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95, 657–667.
Ni, M., Tepperman, J.M., and Quail, P.H. (1999). Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400, 781–784.
Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F.E., Yoshida, S. and Feldmann, K.A. (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 124, 201–209.
Osterlund, M.T. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev. 11, 2983–2995.
Quail, P.H. (2002a). Photosensory perception and signaling in plant cells: new paradigms? Curr. Opin. Cell Biol. 14, 180-188.
Quail, P.H. (2002b). Phytochromes photosensory signaling networks. Nat. Mol Cell Biol. 3, 85-92.
Reed, J.W., Nagatani, A., Elich, T.D., Fagan, M. and Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104, 1139– 1149.
Reed, J.W., Elumalai, R.P. and Chory, J. (1998). Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics, 148, 1295– 1310.
Robson, P.R.H., Whitelam, G.C., and Smith, H. (1993). Selected components of the shade avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiol. 102, 1179–1184.
Sambrook, J., Fritsch, F.E., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).
Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., and Coupland, G. (1998). The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229.
Schwechheimer, C., and Deng, X.W. (2000). The COP/DET/FUS proteins-regulators of eukaryotic growth and development. Seminars in Cell and Developmental Biology 11, 495–503.
Seo, H.S., Yang, J.Y., Ishikawa, M. Bolle, C. Ballesteros, M.L., and Chua N.H. (2003). LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995-999.
Sharrock, R.A., and Quail, P.H. (1989). Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3, 695–707.
Shinomura, T., Nagatani, A., Hanzawa, H., Kuboty,M.,Watanabe, M., and Furuya, M. (1996). Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93, 8129–8133.
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503
Staswick, P.E., Tiryaki, I., and Rowe, M.L. (2002). Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415.
Steber CM, McCourt P (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125, 763–769.
Sullivan. J. A. and Deng. X. W. (2003). From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260, 289–297.
Sun C-W, Callis J (1997). Independent modulation of Arabidopsis thaliana polyubiquitin mRNAs in different organs and in response to environmental changes. Plant J 11, 1017–1027.
Szekeres, M., Ne´meth, K., Koncz-Ka´lma´n, Z., Mathur, J., Kauschmann, A., Altmann, T., Re´dei, G., Nagy, F., Schell, J. and Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182
Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Wang, H., Torres, Q. I., Ward, J. M., Murthy, G., Zhang, J., Walker, J. C. and Michael, M. N. (2005). BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42, 23–34
Wang, H., Ma, L. G., Li, J. M., Zhao, H. Y., and Deng, X. W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154–158.
Wang, Z.Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2, 505-513.
Whitelam, G.C., and Devlin, P.F. (1997). Roles of different phytochromes in Arabidopsis development. Plant Cell 20, 1207-1217.
Xu, W., Bak, S., Decker, A., Paquette, S. M., Feyereisen, R. and Galbraith, D. W. (2002). Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272 ,61–74.
Yamaguchi, S. and Kamiya, Y. (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41, 251–257.
Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181-191.
Yokota T., (1997). The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci., 2, 137–143.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top