跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉育妏
研究生(外文):Yu-Wen Liu
論文名稱:台灣地熱區兩新種嗜熱菌(Chelatococcus類似細菌及Mesorhizobium屬細菌)之研究
論文名稱(外文):Studies on Two Novel Thermophilic Bacteria (Chelatococcus-like Bacteria and Mesorhizobium Species) Isolated from Hot Springs in Taiwan
指導教授:蔡珊珊蔡珊珊引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:50
中文關鍵詞:細菌台灣溫泉
外文關鍵詞:BacteriaTaiwanHot spring
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
從台東縣上里溫泉以及綠島朝日溫泉區域,分離篩選出六株嗜熱菌,經過初步之 16S rRNA gene 序列分析比對,可將這些菌株歸屬於 Chelatococcus 以及 Mesorhizobium 兩群。第一群均由上里溫泉分離出,包括 NTU-1599、NTU-1600 以及 NTU-1601 與 Chelatococcus asaccharovorans DSM 6462T 最相似。第一群分離菌株為好氧菌呈現黃色菌落,為具有移動性之格蘭氏陰性桿菌,最適生長溫度為 50 oC (生長溫度範圍介於 30-55),且可生長於含鹽 6 % 之培養基,DNA 之 mol% G+C 組成為 64.2-64.7。另外, 第一群分離菌株為桿菌且不能利用 NTA 為碳源。這兩個主要特性可以很容易將它們與參考菌株 C. asaccharovorans 區分開來。根據 16S rRNA gene 序列比對相似度(96.55-96.83 %) 、 DNA-DNA 雜合反應結果 (8.5-17.5 %) 以及形態、生理生化等相關分析結果,初步判定第一群分離菌株為 Alphaproteobacteria 中的新菌種且可能為一新菌屬。
第二群皆由綠島朝日溫泉分離出,包括了 NTU-1636、NTU-1642 以及 NTU-1646 與Mesorhizobium loti DSM 2626T相似。第二群分離菌株為好氧菌具移動性,呈現黃色菌落,為具單鞭毛革蘭氏陰性桿菌,生長溫度範圍為30-55 oC (最適生長溫度為 40-50 oC),可於15 % NaCl 之條件下生長。 另外,第二群的分離菌株與 M. loti皆可生長於不含氮的培養基中。第二群分離菌株之DNA 之 mol% G+C 組成為61.7-62.4。根據 DNA-DNA 雜合反應 (3.0-13.3 %) 和16S rRNA gene 序列分析結果(95.27-95.49 %) 以及生理生化等相關特性,可初步判定第二群分離菌株為 Mesorhizobium 屬之新種菌株。
Six thermophilic bacteria were isolated from hot springs locating in the eastern region of Taiwan. The 16S rRNA gene sequence analysis indicated that these strains belonged to Alphaproteobacteria and could be classified into two groups: genus Chelatococcus and genus Mesorhizobium.
Group I including strains NTU-1599, NTU-1600 and NTU-1601 isolated from hot springs in the Shangli area, Taitung county were closely related to Chelatococcus asaccharovorans DSM 6462T. Group I isolates were aerobic, yellow-pigmented, Gram-negative motile rods. The optimal growth temperature of isolates was 50 ℃ (tempterature range 30-55 ℃). Group I isolates could grow in the higher concentration of NaCl up to 6 % (w/v). The mol% G+C contents of the isolates were 64.2-64.7. The major differences between group I and the reference organisms were that group I isolates were rods and could not utilize NTA while the C. asaccharovorans was cocci and could utilize NTA (nitrilotriacetatic acid). According to the DNA-DNA homology (8.5-17.5 %), the 16S rRNA gene sequence analysis between the isolates and reference strain (96.55-96.83 %) as well as morphological, physiological, biochemical and chemical analyses indicated that group I isolates might be a novel genus within the Alphaproteobacteria.
Group II including strains NTU-1636, NTU-1642 and NTU-1646 isolated from hot springs in the Lutao area, Taitung county were closely related to Mesorhizobium loti DSM 2626T. Those isolates were aerobic, motile, yellow-pigmented, Gram-negative rods with a single polar or subpolar flagellum. Growth temperature was between 30-55 ℃ (the optimal growth at 40-50 ℃). The isolates could grow in the medium containing NaCl up to 15 % (w/v). Both group II isolates and M. loti could proliferate in the nitrogen-free modified Thermus medium. The mol% G+C contents of the isolates were 61.7-62.4. Base on the DNA-DNA homology (3.0 -13.3 %), the 16S rRNA gene sequence analysis between the isolates and reference strain (95.27-95.49 %) as well as physiological, biochemical and chemical analyses indicated the isolates represented a novel member of the genus Mesorhizobium.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Abbreviations vi
Contents vii
List of Tables x
List of Figures xi
Introduction 1
1. Thermophilic bacteria 1
2. The application and interest on thermophiles 2
3. Thermophiles in Taiwan 3
4. Thermophilic Proteobacteria 4
5. Introductory of genus Chelatococcus 5
6. Introductory of genus Mesorhizobium 5
7. Aim of research 6
Materials and Methods 8
1. Materials 8
1.1 Source of bacterial strains 8
1.2 Chemicals and materials 8
1.3 Culture media 9
1.3.1 Modified Thermus medium 9
1.3.2 Modified Thermus basal medium 9
1.3.3 Nitrogen-free modified Thermus medium 9
1.4 Instruments 9
2. Methods 10
2.1 Sampling of bacterial strains 10
2.2 Isolation, purification and preservation 10
2.3 Morphological and ultrastructural characteristics 11
2.3.1 Morphology of colonies 11
2.3.2 Gram stain 11
2.3.3 Electron microscopic examination 12
2.3.4 Spreading motility 12
2.4 Physiological characteristics 12
2.4.1 Effect of temperature on growth 12
2.4.2 Effect of pH on growth 12
2.4.3 Effect of salt on growth 13
2.4.4 Single carbon sources utilization 13
2.5 Enzymatic characteristics and cellular properties 14
2.5.1 API-ZYM detection system 14
2.5.2 Starch hydrolysis 14
2.5.3 Casein hydrolysis 14
2.5.4 Gelatin hydrolysis 15
2.5.5 Elastin hydrolysis 15
2.5.6 Oxidase test 15
2.5.7 Catalase test 15
2.5.8 Lipids hydrolysis experiment 16
2.5.9 Chitin utilization 16
2.5.10 Chitosan utilization 16
2.5.11 Xylan utilization 17
2.5.12 PHB hydrolysis 17
2.5.13 Fatty acid profile 17
2.5.14 Antibiotic susceptibility test 18
2.5.15 Nitrogen fixation experiment 19
2.6 Genetic Properties 19
2.6.1. DNA extraction 19
2.6.2 16S rRNA gene ampliflication, sequence determination and phylogenetic analysis 20
2.6.3 DNA base composition 21
2.6.4 DNA-DNA hybridization 22
Results 24
1. Isolation of bacteria strains 24
2. Chelatococcus-like bacterial strains 24
2.1 16S rRNA gene sequence analysis 24
2.2. Morphological and ultrastructural characteristics 25
2.2.1. Colony morphology 25
2.2.2 Gram stain 25
2.2.3 Ultrastructural characteristics 25
2.2.4 Spreading motility 25
2.3 Physiologic characteristics 25
2.3.1 Effect of temperature on growth 25
2.3.2 Effect of pH on growth 26
2.3.3 Effect of salt on growth 26
2.3.4 Single carbon source utilization 26
2.4 Enzymatic characteristics and cellular properties 27
2.4.1 Enzymatic characteristics by the API-ZYM system 27
2.4.2 Other enzyme activities by the non-API-ZYM system 27
2.4.3 Fatty acid composition 27
2.4.4 Antibiotic susceptibility 27
2.5 Genetic Properties 28
2.5.1 DNA base composition 28
2.5.2 DNA-DNA hybridization 28
2.5.3 Phylogenetic analysis 28
3. Mesorhizobium spp. 29
3.1. 16S rRNA gene sequence determination 29
3.2. Morphological and ultrastructural characteristics 29
3.2.1. Colony morphology 29
3.2.2 Gram stain 29
3.2.3 Ultrastructural characteristics 29
3.2.4 Spreading motility 30
3.3 Physiological characteristics 30
3.3.1 Effect of temperature on growth 30
3.3.2 Effect of pH on growth 30
3.3.3 Effect of salt on growth 30
3.3.4 Single carbon source utilization 31
3.4 Enzymatic characteristics and cellular properties 31
3.4.1 Enzymatic characteristics by the API-ZYM system 31
3.4.2 Other enzyme activities by the non-API-ZYM system 31
3.4.3 Fatty acid composition 31
3.4.4 Antibiotic susceptibility 32
3.4.5 Nitrogen fixation test 32
3.5 Genetic Properties 32
3.5.1 DNA base composition 32
3.5.2 DNA-DNA hybridization 33
3.5.3 Phylogenetic analysis 33
Discussion 34
1. Sampling and isolation of bacterial strains 34
2. Characteristics of Chelatococcus-like isolates 35
2.1 Morphological characteristics 35
2.2 Physiological and biochemical characteristics 35
2.3 Fatty acid composition 37
2.4 Genetic characteristics and identification of group I isolates 37
2.5 Description of Chelatococcus-like isolates 38
3. Characteristics of Mesorhizobium spp. 39
3.1. Morphological characteristics 39
3.2. Physiological and biochemical characteristics 39
3.3. Fatty acid composition 40
3.4. Genetic characteristics and identification of group II isolates 41
3.5 Description of Mesorhizobium spp. 41
Conclusion 42
Reference 43
Tables and Figures 51
Appendix 92
Albuquerque, L., Rainey, F. A., Chung, A. P., Sunna, A., Nobre, M. F., Grote, R., Antranikian, G. & da Costa, M. S. (2000). Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of Sao Miguel in the Azores. Int J Syst Evol Microbiol 50, 451-457.

Alfredsson, G. A. & Kristjansson, J. K. (1995). Ecology, distribution, and isolation of Thermus, In Thermus species, pp. 43-63. Edited by R. Sharp & R. A. D. Williams. New York: Plenum Press.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.

Auling, G., Busse, H.-J., Egli, T., El-Banna, T. & Stackebrandt, E. (1993). Description of the gram-negative, obligately aerobic, nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst Appl Microbiol 16, 104-112.

Bequin, P. (1983). Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131, 333–336.

Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W. & Stetter, K. O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1, 14-21.

Brock, T. D. (1978). Thermophilic microorganisms and life at high temperatures. New York: Springer-Verlag.

Brock, T. D. & Freeze, H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98, 289-297.

Buyer, J. S. (2002). Rapid sample processing and fast gas chromatography for identification of bacteria by fatty acid analysis. J Microbiolog Methods 51, 209-215.

Cappuccino, J. G. & Sherman, N. (1998). Microbiology: A Laboratory Manual. 5th ed. The Benjamin/Cummings Publishing Company, Inc., New York.

Chao, K. C. (2006). Studies on novel thermophilic Pseudoxanthomonas-related proteobacteria isolated from geothermal areas in Taiwan. Master Thesis. Institute of Life Science, Fu Jen Catholic University.

Chen, M. Y. (2002). Thermophilic bacteria in geothermal areas of Taiwan. Doctoral Thesis. Institute of Plant Biology, National Taiwan University.

Chen, M. Y., Lin, G. H., Lin, Y. T. & Tsay, S. S. (2002a). Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int J Syst Evol Microbiol 52, 1647-1654.

Chen, M. Y., Tsay, S. S., Chen, K. Y., Shi, Y. C., Lin, Y. T. & Lin, G. H. (2002b). Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52, 2155-2161.

Chen, M. Y., Wu, S. H., Lin, G. H., Lu, C. P., Lin, Y. T., Chang, W. C. & Tsay, S. S. (2004). Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54, 1849-1855.

Chen, T. Y. (2006). Studies on novel thermophilic Marinobacter spp. and Hydrogenophilus sp. isolated from coastal hot springs in Lutao, Taiwan. Master Thesis. Institute of Plant Biology, National Taiwan University.

Chen, T. L., Chou, Y. J., Chen, W. M., Arun, B. & Young, C. C. (2006). Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles 10, 35-40.

Chen, W., Wang, E., Wang, S., Li, Y., Chen, X., & Li, Y. (1995). Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People''s Republic of China. Int J Syst Bacteriol 45, 153-159.

Chen, W. M., Chang, J. S., Chiu, C. H., Chang, S. C., Chen, W. C. & Jiang, C. M. (2005). Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Syst Appl Microbiol 28, 415-420.

Chen, W. X., Li, G. S., Qi, Y. L., Wang, E. T., Yuan, H. L. & Li, J. L. (1991). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41,275-280.

Chien, A., Edgar, D. B. & Trela, J. M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127, 1550-1557.

Choi, Y. J., Kim, E. J., Piao, Z., Yun, Y. C. & Shin, Y. C. (2004). Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol 70, 4522-4531.

Chou, Y. J., Sheu, S. Y., Sheu, D. S., Wang, J. T. & Chen, W. M. (2006). Schlegelella aquatica sp. nov., a novel thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol. 56, 2793-2797

Chung, A. P., Rainey, F. A., Valente, M., Nobre, M. F. & da Costa, M. S. (2000). Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50, 209-217.

Clinical and Laboratory Standards Institute (CLSI formerly NCCLS). (2004). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Information Supplement (May 2004), CLSI document M31-S1. CLSI, Wayne, PA.

Cohan, F. M. (2002). What are bacterial species? Annu Rev Microbiol 56, 457-487.

Cowan, D. A. (2000). Microbial genomes -- the untapped resource. Trends in biotech 18, 14-16.

Das, S. K., Mishra, A. K., Tindall, B. J., Rainey, F. A. & Stackebrandt, E. (1996). Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46, 981-987.

de Lajudie, P., Willems, A., Nick, G., Moreira, F., Molouba, F., Hoste, B., Torck, U., Neyra, M., Collins, M. D., Lindstrom, K., Dreyfus, B. & Gillis, M.(1998). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48, 369-382.

De Rosa, M., Gambacorta, A., Huber, R., Lanzotii, V., Nicolaus, B., Stetter, K. O. & Trincone, A. (1989). Lipid structures in Thermotoga maritima. In Microbiology of Extreme Environments and Its Potential for Biotechnology, pp. 167-173. Edited by M. S. da Costa, J. C. Dyarte & R. A. D. Walliams. London and New York: Elsevier 167 Applied Science.

Egli, T., Weilenmann, H., El-Banna, T. & Auling, G. (1988). Gram negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst Appl Microbiol 10, 297–305.

Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package) version 3.61.

Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P. & da Costa, M. S. (1997). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47, 939-947.

Galtier, N. & Lobry, J. R. (1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44, 632-636.

Gao, J. L., Turner, S. L., Kan, F. L., Wang, E. T., Tan, Z. Y., Qiu, Y. H., Terefework, Z., Young, J. P. W., Lindstrom, K. & Chen, W. X. (2004). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 5, 2003-2012.

Gerhardt, P., Murray, R.G. E., Wood, W. A. & Krieg, N. R. (1994). Methods for General and Molecular Bacteriology, pp.622. New York: American Society for Microbiology.

Gherna, R. L. (1994). Culture preservation. In Methods for General and Molecular Bacteriology, pp. 278-292. Edited by P. Gerhardt. Washington, D.C.: American Society for Microbiology.

Ghosh, W., & Roy, P. (2006). Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from the rhizospheric soil of an Indian tropical leguminous plant. Int J Syst Evol Microbiol 56, 91-97.

Gupta, R. S. (1998). Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62, 1435-1491.

Hayashi, N. R., Ishida, T., Yokota, A., Kodama, T. & Igarashi, Y. (1999). Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 49, 783-786.

Hobel, C. F., Hreggvidsson, G. O., Marteinsson, V. T., Bahrani-Mougeot, F., Einarsson, J. M. & Kristjansson, J. K. (2005). Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 9, 53-64.

Holtke, H. J., Ankenbauer, W., Muhlegger, K., Rein, R., Sagner, G., Seibl, R. & Walter, T. (1995). The digoxigenin (DIG) system for non-radioactive labelling and detection of nucleic acids--an overview. Cell Mol Biol (Noisy-le-grand) 41, 883-905.

Hoppert, M. & Holzenburg, A. (1998). Electron Microscopy in Microbiology. Guildford, UK: BIOS Scientific Publisher.

Hubber, A. M., Sullivan, J. T. & Ronson, C. W. (2007). Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interact. 20, 255-261

Humble, M. W., King, A. & Phillips, I. (1977). API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30, 275-277.

Jarvis, B. D. W., Pankhurst, C. E. & Patel, J. J. (1982). Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32, 378-380.

Jarvis, B. D. W., Van Berkum, P., Chen, W. X., Nour, S. M., Fernandez, M. P., Cleyet-Marel, J. C. & Gillis, M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47, 895-898.

Johnson, J. L. (1994). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655-682. Edited by P. Gerhardt. Washington, D.C.: American Society for Microbiology.

Kessler, C., Holtke, H. J., Seibl, R., Burg, J. & Muhlegger, K. (1990). Non-radioactive labeling and detection of nucleic acids. I. A novel DNA labeling and detection system based on digoxigenin: anti-digoxigenin ELISA principle (digoxigenin system). Biol Chem Hoppe Seyler 371, 917-927.

Kikuchi, A. & Asai, K. (1984). Reverse gyrase a topoisomerase which introduces positive superhelical turns into DNA. Nature. 309, 677-681.

Kim, H. M., Ryu, K. E., Bae, K. & Rhee, Y. H. (2000). Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. J Biosci Bioeng 89, 196-198.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleaotide sequence. J Mol Evd 16, 111-120.

Kristjansson, J. K. & Stetter, K. O. ( 1992 ). Thermophilic Bacteria. In Thermophilic Bacteria, pp. 1-18. Edited by J. K. Kristjansson. Boca Raton: CRC Press

Lapage, S. P., Shelton, J. E. & Mitchell, T. G. (1970a). Midia for the maintenance and preservation of bacteria. In Methods in Microbiology, pp. 1-133. Edited by J. R. Norris & D. W. Ribbons. Lodon ; New York: Academic Press.

Lapage, S. P., Shelton, J. E., Mitchell, T. G. & Mackenzie, A. R. (1970b). Culture collections and the preservation of bacteria. In Methods in Microbiology, pp.135-288. Edited by J. R. Norris & D. W. Ribbons. Lodon ; New York: Academic Press.

La Scola, B., Mallet, M. N., Grimont, P. A. D. & Raoult D. (2003). Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 53,15-20.

Lee, E. M., Jeon, C. O., Choi, I., Chang, K. S. & Kim, C. J. (2005). Silanimonas lenta gen. nov., sp. nov., a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 55, 385-389.

Li, S. S. (2006). Studies on novel thermotolerant Exiguobacterium sp. isolated from geothermal areas of Lutao, Taiwan. Master Thesis. Institute of Life Science, Fu Jen Catholic University.

Manaia, C. M. & da Costa, M. S. (1991). Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J Gen Microbiol 137, 2643-2648.

Marteinsson, V. T., Hauksdottir, S., Hobel, C. F., Kristmannsdottir, H., Hreggvidsson, G. O. & Kristjansson, J. K. (2001). Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67, 4242-4248.

Mesbah, M. & Whitman, W. B. (1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297-306.

Nukui, N., Minamisawa, K., Ayabe, S. & Aoki, T. (2006). Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72, 4964-4969.

Nour, S. M., Cleyet-Marel, J. C., Normand, P. & Fernandez, M. P. (1995). Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45, 640-648.

Nour, S. M., Fernandez, M. P., Normand, P. & Cleyet-Marel, J.C. (1994). Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44, 511-522.

Oshima, T. (1974). Comparative studies on biochemical properties of an extreme thermophile, Thermus thermophilus HB 8 (author''s transl). Seikagaku 46, 887-907.

Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. (1996). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46,
1088–1092.

Pantazaki, A. A., Pritsa, A. A. & Kyriakidis, D. A. (2002). Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58, 1-12.

Prescott, L. M., Harley, J. P. & Klein, D. A. (2005). Microbiology, 6th ed., McGraw-Hill Higher Education, New York.

Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature 409, 1092-1101.

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.

Schiraldi, C. & De Rosa, M. (2002). The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20, 515-521.

Shieh, W. Y. (1993). A halophilic thermophilic bacterium isolated from a coastal hot spring in Lutao, Taiwan. J Gen Microbiol 139, 2505-2510.

Shieh, W. Y. & Jean, W. D. (1998). Alterococcus agarolyticus, gen.nov., sp.nov., a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44, 637-645.

Shieh, W. Y., Jean, W. D., Lin, Y. T. & Tseng, M. (2003). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49, 244-252.

Shi, Y. C. (2005). Studies of novel thermophilic Silanimonas-like proteobacteria isolated from geothermal areas in Taiwan. Master Thesis. Institute of Plant Biology, National Taiwan University.

Sperandio, V., Torres, A. G. & Kaper, J. B. (2002). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and twitching motility by quorum sensing in E. coli. Mol Microbiol 43, 809-821.

Stetter, K. O. (1998). Hyperthermophiles: isolation, classification and properties. In Extremophiles : microbial life in extreme environments, pp. x, 322. Edited by K. Horikoshi & W. D. Grant. New York: Wiley-Liss.

Takai, K., Nunoura, T., Sako, Y. & Uchida, A. (1998). Acquired thermotolerance and temperature-induced protein accumulation in the extremely thermophilic bacterium Rhodothermus obamensis. J Bacteriol 180, 2770-2774.

Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.

Velazquez, E., Igual, J. M., Willems, A., Fernandez, M. P., Munoz, E., Mateos, P. F., Abril, A., Toro, N., Normand, P., Cervantes, E., Gillis, M. & Martinez-Molina, E. (2001). Mesorhizobium chacoense sp. nov. a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51, 1011-1021.

Vilardo Mde, C., Thome, J. D., Esteves, W. T., Filgueiras, A. L. & de Oliveira, S. S. (2006). Application of biochemical and polymerase chain reaction assays for identification of Campylobacter isolates from non-human primates. Mem Inst Oswaldo Cruz. 101, 499-501.

Wang, E. T., van Berkum, P., Sui, X. H., Beyene, D., Chen, W. X. & Martinez-Romero, E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49, 51-65.

Wang, F. Q., Wang, E. T., Liu, J., Chen, Q., Sui, X. H., Chen, W. F. & Chen, W. X. (2007). Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57, 1192-1199.

Williams, R. A., Smith, K. E., Welch, S. G., Micallef, J. & Sharp, R. J. (1995). DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol 45, 495-499.

Woese, C. R. (1987). Bacterial evolution. Microbiol Rev 51, 221-271.

Woese, C. R. & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74, 5088-5090.

Woese, C. R., Kandler, O. & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576-4579.

Wylie, P., Szelewski, M. & Meng, C. K. (2004). Rapid analysis for 567 pesticides and endocrine disrupters by GC/MS using deconvolution reporting software. Organohalogen Compounds 66, 175-180.

Zierenberg, R. A., Adams, M. W. & Arp, A. J. (2000). Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci U S A. 97, 12961-12962.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 15.陳禎祥(1999) ;校園安全衛生規劃實務之研擬,醫護科技學刊,第1卷第2期,第195~205頁。
2. 12.于樹偉(2001) ;由OHSAS 18001談管理制度整合,環境工程會刊12:3,第25~31頁。
3. 12.于樹偉(2001) ;由OHSAS 18001談管理制度整合,環境工程會刊12:3,第25~31頁。
4. 10.陳俊瑜、李金泉(2002) ;校園實驗(習)場所安全衛生管理系統之建置,化工,第49卷第5期,第4~12頁。
5. 10.陳俊瑜、李金泉(2002) ;校園實驗(習)場所安全衛生管理系統之建置,化工,第49卷第5期,第4~12頁。
6. 4.林建良、張甫任(2001) ;台灣地區大專院校實驗室安全衛生管理之現況探討,環保月刊,第1卷第3期,第161~170頁。
7. 4.林建良、張甫任(2001) ;台灣地區大專院校實驗室安全衛生管理之現況探討,環保月刊,第1卷第3期,第161~170頁。
8. 15.陳禎祥(1999) ;校園安全衛生規劃實務之研擬,醫護科技學刊,第1卷第2期,第195~205頁。
9. 18.林國雄;葉勝雄(2002) ;如何推動校園實驗室安全衛生管理,化工,49卷5期,第24~27頁。
10. 18.林國雄;葉勝雄(2002) ;如何推動校園實驗室安全衛生管理,化工,49卷5期,第24~27頁。
11. 19.林明洲、陳俊瑜(2002) ;職業安全衛生管理系統績效評估模式之探討,化工,第49卷第5期,第77~88頁。
12. 19.林明洲、陳俊瑜(2002) ;職業安全衛生管理系統績效評估模式之探討,化工,第49卷第5期,第77~88頁。
13. 21.賈台寶(2002) ;校園實驗場所環安衛持續改善規劃探討,化工,第49卷第5期,第28~33頁。
14. 21.賈台寶(2002) ;校園實驗場所環安衛持續改善規劃探討,化工,第49卷第5期,第28~33頁。
15. 27.宋餘俠 (2006) ;重組行政組織及資訊系統提供整合服務,研考雙月刊,第30卷第6期,第35~43頁。