跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江淑雯
研究生(外文):Shu-wen Chiang
論文名稱:番木瓜色彩讀值與主要色素含量之相關性分析
論文名稱(外文):Correlation analysis of papaya (Carica papaya L.) chromaticity values and main pigment content
指導教授:張龍生張龍生引用關係
指導教授(外文):Loong-Sheng Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:52
中文關鍵詞:番木瓜色彩讀值類胡蘿蔔素相關性分析
外文關鍵詞:papayacolor readingcarotenoidcorrelation analysis
相關次數:
  • 被引用被引用:3
  • 點閱點閱:524
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
茄紅素(Lycopene)、β-胡蘿蔔素(β-carotene)和β-隱黃素(β-cryptoxanthin)為番木瓜(Carica papaya L.)果實中主要含量的類胡蘿蔔素。類胡蘿蔔素是有效的天然抗氧化物,提升有益健康的果實內容物為番木瓜遺傳育種重要目標。增加類胡蘿蔔素含量的作物改良,需要遺傳的變異(genetic variability)以及一個快速且準確的方法來定量。在眾多的分析技術中,高效液相層析準確性高,其限制為必須在實驗室操作、專業的操作人員以及使用高毒性的溶劑。色度計的色彩讀值推估果實類胡蘿蔔素含量是為一種快速分析的替代方法。若番木瓜果肉之色彩讀值的變化與各類胡蘿蔔素含量之具有相關性,則會助益番木瓜之育種,惟至目前為止尚未有此方面之研究。利用‘台農2號’和台大選育品系在不同成熟期測量果肉L*、a*、b*值,同時利用高效液相層析法定量果實內含的茄紅素、β-胡蘿蔔素和β-隱黃素,推導最佳的迴歸公式。本文試圖藉迅速且容易的色度計之色彩讀值,推估番木瓜果實的類胡蘿蔔素含量,故在量測果實成熟時主要色素含量與色彩讀值之變化。結果顯示‘台農二號’的主要類胡蘿蔔素總和(茄紅素+β-胡蘿蔔素+β-隱黃素(ug.g-1))與a*值迴歸公式為-0.0006 a* 4 + 0.0161 a* 3 - 0.0386 a* 2 + 0.2484 a* + 2.3905,期判定係數R2= 90.3%。台大選育品系的三種主要色素總含量(茄紅素+β-胡蘿蔔素+β-隱黃素(μg.g-1))公式為 4.2309(a*) - 42.239,具有92.4%的可信度。因此可在田間以便捷攜帶之色度計可準確預估番木瓜果實內主要類胡蘿蔔素含量變化。
民國六十年育成的一代雜交種‘台農二號’番木瓜(Carica papaya L.)是我國最主要的木瓜品種,其產量高又富含色素,且週年供應市場需求。在市場之‘台農二號’番木瓜果實變異極大;這可能是親本、栽培技術和氣候風土等影響。所以本研究以不同來源之‘台農二號’品種為材料,以RCBD二重複種在網室內,探討其重量、總可溶性固形物、果肉色澤以及果實色素含量的差異。結果顯示來源不同的‘台農二號’木瓜品種間其平均果重、總可溶性固形物、色相、茄紅素含量、維生素A含量有顯著差異。以氧自由基吸收能力分析(Oxygen radical absorbance capacity assay, ORAC)其果肉之總抗氧化力亦有差別,每克番木瓜果肉相當於1μmol Trolox的2.3~4.9倍。色度計量測之a*值與果肉總可溶性固形物在不同來源‘台農二號’中呈現直線的相關性,且色彩讀值a*值對總可溶性固形物之判定係數為51.4%,直線迴歸公式Brixo= 0.2604(a*)+ 2.7107。研究顯示所謂‘台農二號’番木瓜果實在相同的栽培管理下,確實存有遺傳的差異;也許可作為將來育種的材料或對往後選擇最適當之‘台農二號’推廣。
Papaya (Carica papaya L.) fruits have values for abundant of lycopene, β-carotene, and β-cryptocanthin. They are potent natural antioxidants. To improve the healthy nutrients will benefit papaya breeding. Genetic manupulating fruit carotenoid content requires genetic variability and a rapid and accurate method of carotenoid quantitication. High-performance liquid chromatography (HPLC) is often used to quantify pigment contents; however, it is laborious. It requires skilled labor, and use highly toxic solvents. Fruit carotenoids estimation measured by colorimeter has been proposed as an alternative rapid method. Regrssion of the main carotenoids contents of papaya on the color readings has not been reported yet. The L*, a*, b* values and the main carotenoids content of ‘Tainung No.2’ and one virus tolerant papaya line were used to quantify papaya pigments and chromaticity values at fruit maturity stages. The lycopene, β-carotene, and β-cryptocanthin content, measured by HPLC, were highly significantly correlated with the color readings. Regression of three main carotenoids content of ‘Tainung No.2’ papaya on a* value yielded the equations β-cryptoxanthin+ β-carotene +lycopene, μg.g-1 as followed: -0.0006 a* 4 + 0.0161 a* 3 - 0.0386 a* 2 + 0.2484 a* + 2.3905. The regression that color reading a* of the viral tolerant breeding papaya line to β-cryptoxanthin+ β-carotene +lycopene, ug.g-1 was as followed: 4.2309 (b*) - 42.239. The coefficient of determination of these 2 regression line were 90.3% and 92.4%, respectively. Estimation of the lycopene, β-carotene, and β-cryptocanthin contents of papaya can be achieved rapidly and reliably across wide range of papaya lines by using a portable colorimeter measurement. It will benefit the selection efficiency in the field work to quantify papaya color pigments.
‘Tainung No.2’ papaya is the most important variety with high yield potentiality, and rich of pigments. It supply the market demand throughout the year. ''Tainung No.2'' is a hybrid; however, ‘Tainung No.2’ papaya fruit has various shapes, size, flesh color in the market. It possibly is due to parental genetic make-up, cultivation practices, and local conditions. We collected the different sources which have a common name of ‘Tainung No.2’ variety planted design by RCBD with two repetitions in the net-house under the same management. Significant difference of fruit weight, the total soluble solids, fruit pulp color, pigment contents, hue, lycopene content, vitamin A content were found among collections of diffeent locations. Oxygen radical absorbance capacity assay (ORAC) was also to quantify papaya fruit total antioxidant activity. Each gram papaya fruit pulp was 2.3~4.9 folds equal to 1 μmol Trolox.. The colormeter value of a* value measured by colorimeter and the total soluble solids of different ‘Tainung No.2’ was linear correlated. Regressing total soluble solids content of ‘Tainung No.2’ papaya on a* value yielded the regression equations as Brixo = 0.2604 (a*) + 2.7107 (R2= 0.514). Variety so-called ‘Tainung No.2’ under the same cultivation management practices has different genetic make-up, it also permitted to provide useful genetic variability to improve pigment contents in the future.
目錄…………………………………………………………………i
表目錄………………………………………………………………ii
圖目錄………………………………………………………………iii
前言…………………………………………………………………1
前人研究……………………………………………………………………3
第一章 果肉色彩讀值測量以建立準確且快速預估番木瓜色素含量……………………………………………………………………10
摘要..................................................10
前言..................................................11
材料方法..............................................13
結果..................................................15
討論..................................................17
Abstract..............................................20
第二章 不同的來源‘台農二號’番木瓜的色素含量和色彩讀值之差異…………………………………………………………………29
摘要..................................................29
前言..................................................30
材料方法....................................................31
結果..................................................33
討論..................................................35
Abstract..............................................37

參考文獻..............................................47


表目錄
Contents of Tables
表1.1.不同成熟期‘台農二號’番木瓜果實色彩讀值對主要色素含量的相關係數。 .......................................21
Table 1.1. Correlation coefficients between the color readings and three main carotenoids content of ‘Tainung No.2’ papaya in different maturity stage. ...........21
表1.2.不同成熟期番木瓜(台大選育品系‘NTU28’)果實色彩讀值對主要色素含量的相關係數。..................................................22
Table 1.2. Correlation coefficients between the color readings and three main carotenoids content of ‘NTU28’ papaya in different maturity stage. ..................22

表2.1. 番木瓜品種‘台農二號’之不同搜集來源。.........38
Table 2.1. Papaya cultivar ‘Tainung No.2’ was come from different sources. ...................................38
表2.2. 不同來源‘台農二號’番木瓜總可溶性固形物、β-胡蘿蔔素、茄紅素與色彩讀值之相關係數。......................39
Table 2.2. Correlation coefficients between the color readings and total soluble solids, β-carotene, lycopene content of ‘Tainung No.2’ papaya from different sources. ………………………………………………………………………39



圖目錄
Contents of Figures
圖 1.1. ‘台農二號’番木瓜果肉在花後不同時間,A:色相與色度之變化,B:主要色素含量之變化。.......................23
Fig. 1.1. Hue, Chroma (A) and main pigment content (B) in developing fruits of ‘Tainung No.2’ papaya in the L*, a*, b* system. .......................................23
圖 1.2. 番木瓜(台大選育品系‘NTU28’)果肉在花後不同日數,A:色相與色度之變化,B:主要色素含量之變化。..................................................24
Fig. 1.2. Hue, Chroma (A) and main pigment content (B) in developing fruits of ‘NTU28’ papaya in the L*, a*, b* system. ..............................................24
圖 1.3. ‘台農二號’番木瓜果肉中,由HPLC測得類胡蘿蔔素含量與色度計測得色彩讀值的關係。..................................................25
Fig. 1.3. Regression of the color readings measured by colorimeter with the main carotenoids content measured by HPLC of ‘Tainung No.2’ papayas. ....................25
圖 1.4. 台大選育品系‘NTU28’番木瓜果肉中,由HPLC測得類胡蘿蔔素含量與色度計測得色彩讀值的關係。..................27
Fig. 1.4. Regression of the color readings measured by colorimeter with the main carotenoids content measured by HPLC of ‘NTU28’ papayas.............................27

圖2.1. 不同來源‘台農二號’番木瓜果實重量之變化。.....40
Table 2.1. Papaya cultivar ‘Tainung No.2’ was come from different sources. ...................................40
圖2.2. 不同來源‘台農二號’番木瓜果實總可溶性固形物之變化。..................................................41
Fig. 2.2. Comparison of total soluble solids of ‘Tainung No.2’ papaya was come from difference sources. .............................................41
圖2.3. 不同來源‘台農二號’番木瓜果肉色相與色度之變化。..................................................42
Fig. 2.3. Comparison of hue and chroma of ‘Tainung No.2’ papaya was come from difference sources. .............................................42
圖2.4. 不同來源‘台農二號’番木瓜果肉主要色素含量之變化。..................................................43
Fig. 2.4. Comparison of main pigment content of ‘Tainung No.2’ papaya was come from difference sources. .............................................43
圖2.5. 不同來源‘台農二號’番木瓜果肉維生素A含量之變化。..................................................44
Fig. 2.5. Comparison of vitamin A content of ‘Tainung No.2’ papaya was come from difference sources. .............................................44
圖2.6. 以ORAC法測定不同來源’台農二號’番木瓜果實之總抗氧化能力。................................................45
Fig. 2.6. Total antioxidant activity of ‘Tainung No.2’ papaya from difference sources measured by ORAC. ................................................45
圖2.7. 不同來源‘台農二號’番木瓜果肉之色彩讀值與總可溶性固形物之直線迴歸。......................................46
Fig. 2.7. Linear regression of the Color readings factor with the total soluble solids content of ‘Tainung No.2’ papaya was come from difference sources. .............46
1.邱展臺、謝明憲、柯天雄. 2002. 概述臺農二號木瓜果實性狀之演變. 農業世界. 228:102-105.
2.張明聰. 1996. 台灣熱帶地區木瓜產業經營及展望.台灣熱帶地區果園經營管理研討會專刊. 臺灣省高雄區農業改良場編印. p.79-92.
3.梁佑慎. 2005. 市售新鮮蔬果抗氧化能力及水果品種與不同部位抗氧化能力之研究. 屏東科技大學熱帶農業暨國際合作研究所碩士論文.
4.黃蔭樨 譯. 1980. 維生素A. p.755.刊於:食品分析法. 國立編譯館出版. 臺北
5.農委會. 2004. 區域農業經濟資料庫查詢系統. <http://ag.coa.gov.tw/agriculture/area.htm>
6.農委會. 2006. 農畜產品價格查報系統 <http://agrapp.coa.gov.tw/agrPR-net/index.htm>
7.蔡雅惠、柯立祥. 2004. 番木瓜果實生長發育之理化特性探討. 中國園藝 50:63-78.
8.顏麗姝. 1997. 胡蘿蔔素分析方法之簡介. 食品工業月刊. 29: 33-43.
9.羅佩文. 2001. 台灣數種特有水果抗氧化活性及清除自由基能力之評估. 輔仁大學食品營養系. 碩士論文.
10.AACC 1995. Approved Methods of the American Association of Cereal Chemists. AACC: St. Paul, MN. AACC 14-10, 14-25, 14-50.
11.Acquistucci, R. and L. A. Pasqui. 1991. A study concerning a method for the rapid determination of semolina colour. Nahrung 35:345-349.
12.Ameny M. A. and P. W. Wilson, 1997. Relationship between hunter color values and β- carotene contents in white-fleshed African sweetpotatoes (Ipomoea batatas Lam). J. Sci. Food Agric. 73:301-306.
13.Ames, B. M., M. K. Shigena, and T. M. Hagen. 1993. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 90: 7915-7922.
14.Anguelova, T. and J. Warthsen. 2000. Degradation of lycopene, α-carotene, and β-carotene during lipid peroxidation. J. Food Sci. 65:71-75.
15.AOAC 1975. Official Methods of Analysis. Washington, DC, AOAC method 14.045.
16.Arias, R., T. C. T. Lee, L. Logendra, and H. Janes. 2000. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 48:1697-1702.
17.Ben-Amotz, A. and R.Fishler.1998. Analysis of carotenoids with emphasis on 9-cisβ-carotene in vegetables and fruits commonly consumed in Israel. Food Chem. 62:515-520.
18.Cano, M. P., B. Ancos, M. G.. Cobo, and M. Monreal. 1996. Carotenoids pigments and colour of hermaphrodite and female papaya fruits (Carica papaya L.) c.v. Sunrise during post-harvest ripening. J. Sci. Food Agric. 71:351-358.
19.Chandrika, U. G., E. R. Jansz, S. N. Wickramasinghe, and N. D. Warnasuriya. 2003. Carotenoids in yellow- and red-fleshed papaya (Carica papaya L.). J. Sci. Food Agric. 83:1279-1282.
20.CIE 1986. CIE Publication 15.2. Colorimetry, 2nd ed.; CIE Central Bureau Kegelgasse: Wien, Austria 27-A-1030.
21.Craft, N. E., S. A. Wise, and J. H. Soares. 1992. Optimization of an isoratic high-performance lipid chromatographic separation of carotenoids. J. Chromatogr. 589:171-176.
22.Davey, N. W., J. Keulemans, and R. Swennen. 2006. Methods for the efficient quantification of fruit provitamin A contents. J. Chromatogr. A 1136: 176-184.
23.Davis, A. R., W. W. Fish, and P. Perkins-Veazie. 2003. A rapid hexane-free method for analyzing lycopene content in watermelon. J. Food Sci. 68: 328-332.
24.Di Mascio, P., S. Kaiser, and H. Sies. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. and Biophys. 274:532-538.
25.Dowell, F. E. 1998. Automated color classification of single wheat kernels using visible and near-infrared reflectance. Cereal Chem. 75:142-144.
26.Dutta. D., D. Ghosh, U. R. Chaudhuri, and R. Chakraborty. 2006. Retention of beta-carotene in papaya during low temperature storage. J. Food Sci. Technol. 43:544-548.
27.Dziezak, J. D. 1986. Preservatives: Antioxidant. Food Technol. 40:94-102.
28.Emenhiser, C., L. C. Sander, and S. J. Schartz. 1995. Capability of polymeric C-30 stationary phase to resolve cis-trans carotenoid isomers in reversed-phase liquid chromatography. J. Chromatogr. A 707:205-216.
29.Fish, W. W., P. Perkins-Veazie, and J. K. Collins.2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Comp. Anal. 15:309-317.
30.Fratianni, A., M. Irano, G. Panfili, and R. Acquistucci. 2005. Estimation of color of durm wheat comparison of WSB, HPLC, and reflectance colorimeter measurements. J. Agric. Food Chem. 53: 2373-2378.
31.Gomez, R., J. Costa, M. Amo, A. Alvarruiz, M. Picazo, and J. E. Pardo. 2001. Physicochemical and colorimetric evaluation of local varieties of tomato grown in SE Spain. J. Sci. Food Agric. 81:1101-1105.
32.Howitt, A. C. and B. J. Pogson. 2006. Carotenoid accumulation and function in seeds and non-green tissues. Plant, Cell and Envirom. 29:435–445.
33.Hyman, J. R., J. Gaus, and M. R. Foolad. 2004. A rapid and accurate method for estimating tomato lycopene content by measuring chromaticity values of fruit puree. J. Amer. Soc. Hort. Sci. 129:717-723.
34.Isler, O., H. Gutmann, and U. Solms. 1971. Carotenoids. Basel: Birkhauser, 932 pp.
35.ISO 1994. International Organization for Standardization: Geneva, Switzerland. ISO method 11052.
36.Kimura, M. and D. B. Rodriguez-Amaya. 1999. Sources of errors in the quantitative analysis of food carotenoids by HPLC. Arch. Latinoam. Ntur. 49: 58S-66S.
37.Kimura, M., D. B. Rodriguez-Amaya, and S.M. Yokoyama. 1991. Cultivar differencra and geographic effects on the carotenoid composition and vitamin A value of papaya. Lebensm-Wiss. Technol. 24:425-418.
38.Krinsky, N. I. 1991. Effects of carotenoids in cellular and animal systems. Amer. J. Clin. Nutr. 53:194-200.
39.Lee, H. S. 2000. Objective measurement of red grapefruit juice color. J. Agric. Food chem. 48:1507-1511.
40.Lee, H. S. 2001. Characterization of carotenoids in juice of red Navel orange (Cara Cara). J. Agric. Food chem. 49:2563-2568.
41.Mathews-Roth, M. M. 1982. Antitumor activity of β-carotene, canthaxanthin and phytoene. Oncology 39:33-37.
42.McCaig, T. N. 2002. Extending the use of visible/near-infrared reflectance spectrophotometers to measure colour of food and agricultural products. Food Res. Int. 35:731-736.
43.McGuire, R. G.. 1992. Reporting of objective color measurements. HortScience. 27:1254-1255.
44.Mehdipour, S., N. Yasa, G. Dehghan, R. Khorasani, A. Mohammadirad, R. Rahimi, and M. Abdollah. 2006. Antioxidant Potentials of Iranian Carica papaya juice in vitro and in vivo are Comparable to α-Tocopherol. Phytother. Res. 20:591-594.
45.Melendez-Martinez, A. J., I. M. Vixario, and F. J. Heredia. 2003. Application of tristimulus colorimetry to estimate the carotenoids content in ultrafrozen orange juices. J. Agric. Food Chem. 51:7266-7270.
46.Mercadant, A. E. and D. B. Rodriguez-Amaya. 1998. Effects of ripening, cultivar differences, and processing on the carotenoid compositiob of mango. J. Agric. Food Chem. 46:128-130.
47.Oliver, J. and A. Palou. 2000. Chromatographic determination of carotenoids in foods. J. Chromatogr. A 881:543-555.
48.Olson, J. A. 1989. Biological actions of carotenoids. J. Nutr. 119:94-95.
49.Philip, T. and T. S. Chen. 1988a. Development of a method for the quantitative estimation of provitamin A carotenoids in some fruits. J. Food Sci. 53:1703-1706.
50.Philip, T. and T. S. Chen. 1988b. Quantitative analyses of major carotenoid fatty acid esters in fruits by liquid chromatography: persimmon and papaya. J. Food Sci. 53:1720-1722.
51.Prabhala, R. H., H. S. Garewal, M. J. Hicks, R. E. Sampliner, R.R. Watson. 1991. The effects of 13-cis-retionic acid and β-carotene on cellular immunity in humans. Cancer 67:1556-1560.
52.Rao, A. and S. Agarwal. 1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic disease. Nutr. Res. 19:305-323.
53.Rao, C. N., and B. S. Rao. 1970. Absorption of dietary carotenes in human subjects. Amer. J. Clin. Nutr. 423:105-109.
54.Rice-Evans, C., N. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Sci. 2:152-159.
55.Riso, P. and M. Porrini. 1997. Determination of carotenoids in vegetable foods and plasma. Internat. J. Vit. Nutr. Res. 67:47-54.
56.Rogers, A. E., S. H. Zeisel, and J. Groopman. 1993. Diet and carcinogenesis. Carcinogenesis. 14: 2205-2217.
57.Ronen, G., M. cohen, D. Zamir, and J. Hirschberg. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in mutant Delta. Plant J. 17:341-351.
58.Ruiz, D., J. Egea, F. A. Tomás-Barberán, and M. I. Gil. 2005. Carotenoids from New Apricot (Prunus armeniaca L.) Varieties and Their Relationship with Flesh and Skin Color. J. Agric. Food Chem. 53:6368-6374.
59.Saleh, M. H. and B. Tan. 1991. Separation and identification of cis/trans carotenoid isomers. J. Agric. Food Chem. 39:1438-1443.
60.Sankat, C. K. and M. S. Maharaj. 1997. p167-189. In: Mitra, S. K.(ed.). Postharvest physiology and storage of tropical and subtropical fruits. CAB International, Wallingford, UK.
61.Selvaraj, Y., D. K. Pal, M. D. Subramanyam, and C. P. A. Iyer. 1982. Changes in the chemical composition of four cultivars of papaya(Carica papaya L.) during growth and development. J. Hort. Sci. 57:135-141.
62.Setiawan, B., A. Sulaeman, D. W. Giraud, and J. A. Driskell. 2001. Carotenoid content of selected Indonesian fruits. J. Food Compos. Anal. 14:169-176.
63.Sies, H., and W. Stahl. 1995. Vitamins E and C, β-carotene, and other carotenoids as antioxidants. Amer. J. Clin. Nutr. 62:1315-1321.
64.Soares, F. D., T Pereira, M. O. M. Marques, A. R. Monteiro. 2007. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chem. 100:15-21.
65.Standard Methods of the International Association for Cereal Chemistry. 1990. ICC: Detmold, Germany. ICC method 152.
66.Tomita, Y., K. Himeno, K. Nomoto, H. Endo, and T. Hirohata. 1987. Augmentation of tumor immunity against syngeneic tumors in mice by β-carotene. J. Natl. Cancer Inst. 78:679-680.
67.USDA, 2005. National database for standard reference. http://www.nal.usda.gov/fnic/foodcomp/search/.
68.van den Berg, H., R. Faulks, H. F. Granado, J. Hirschberg, B. Olmedilla, G. Sandmann, S. Southon, and W. Stahl. 2000. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agric. 80:880-912.
69.Wall, M. M. 2006. Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Comp. Anal. 19:434-445.
70.Wang, H., G.. Cao, and R. L. Prior. 1996. Total antioxidant capacity of fruits. J. Agric. Food Chem. 44: 701-705.
71.Wang, S. Y. and Lin, H. S. 2000. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 48: 140-146.
72.Wang, Y. S. and A. W. Stretch. 2001. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J. Agric. Food Chem. 49: 969-974.
73.Watanabe, K. and C. Takagi. 2000. Cultivar differences with respect to carotenoid and β-carotene in carrots. J. Soc. High Tech. Agric. 12:134-137.
74.Yamamoto, H. Y. 1964. Comparison of the carotenoids in yellow- and red-fleshed Carica papaya. Nature 201:1049-1050.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 7. 蔡雅惠、柯立祥. 2004. 番木瓜果實生長發育之理化特性探討. 中國園藝 50:63-78.
2. 1. 邱展臺、謝明憲、柯天雄. 2002. 概述臺農二號木瓜果實性狀之演變. 農業世界. 228:102-105.
3. 8. 顏麗姝. 1997. 胡蘿蔔素分析方法之簡介. 食品工業月刊. 29: 33-43.
4. 朱金池(1991):影響組織承諾因素之研究。警政學報,第十九期,頁111-128。
5. 沈湘縈(1986):警察工作壓力及其輔導策略之探討。警學叢刊,第17卷2期,32-39頁。
6. 吳瓊恩(1989):從各科學典範變遷趨勢檢討公共組織理論實證研究的限制及其可突破的可能性。國立政治大學學報,第60期,頁109。
7. 吳耀鐘、魏振中(1974):警察心理(職業)壓力問題之研究。警光雜誌,第330期,頁6-14。
8. 吳學燕(1995):警察的壓力與管理。警學叢刊。25卷4期,3-21頁。
9. 李健浩(1994):殘障者之工作適應及輔導。就業與訓練,第六期,81-84。
10. 沈湘縈(1986):警察工作壓力及其輔導策略之探討。警學叢刊,第17卷第2期,頁32-39。
11. 林純文(1995):國民小學組織氣候、教師工作壓力及其因應方式之研究。國立屏東師範學院國民教育研究所碩士論文。
12. 林錦坤(2000):台灣地區基層警察人員自殺傾向預測模式之實證研究。中央警察大學學報36期,341-372頁。
13. 侯崇文(1985):警察犬儒心態測量上的評估。社會學與社會工作,第7期,39-50頁。
14. 曾浚添(2003):社會工作在警政機關運用之研究。警學叢刊,第34卷第2期,頁72-88。
15. 張錦麗(1988):影響基層員警適應與求助因素的探討。警專學報,第2卷第4期,頁61-84。