跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁婷雅
研究生(外文):Ting-Ya Liang
論文名稱:利用RAPD與ISSR標誌分析芥藍的遺傳歧異度
論文名稱(外文):Genetic Diversity of Chinese Kale (Brassica oleracea L. var. alboglabra) by RAPD and ISSR Markers
指導教授:曹幸之曹幸之引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:91
中文關鍵詞:芥藍DNA 分子標誌RAPDISSR遺傳歧異度
外文關鍵詞:Chinese kaleDNA markerRAPDISSRGenetic diversity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
芥藍(Brassica oleracea var. alboglabra)為中國特有蔬菜,比其他甘藍類蔬菜較為耐熱及早熟。在台灣,栽培品種依用途有葉用一次採收、腋芽多而分次採收及嫩花苔分次採收。依採種方式以開放受粉(OP)品種為主。由於芥藍多以外形特徵命名,使得許多芥藍品種具有相同名稱,但不能確定這些品種是否相同,或不同品種間有多大的遺傳差異。本研究利用RAPD (random amplified polymorphic DNA)與ISSR (inter simple sequence repeat)兩種分子標誌探討所蒐集 44個芥藍品種的遺傳歧異度,同時調查各品種葉形、株形、葉色及抽苔性等主要外形特徵。白格林群(6個品種)葉黃綠、葉色最淺,葉綠素計讀值(SPAD)約 30;黑格林、黑芥藍及白花芥藍群(20個品種)葉色深綠、SPAD值 55- 67;及黃花芥藍(10個品種)葉色及SPAD值介於兩群間。

首先比較芥藍品種內的整齊度,利用 30個RAPD引子分析五個OP品種及一個F1品種,各八個單株的品種內及品種間遺傳變異。參試品種中 36 黃花嫩葉芥藍為黃花品種,其他為白花品種,總共產生 113個分子標誌,其中單型性標誌 52個,多型性標誌 61個(佔 54%),平均每個引子可產生 3.8個標誌。參試樣品間遺傳相似度介於 0.31- 1.0相似度介於 0.31- 1,平均相似度為 0.78, 37.翠寶芥藍(F1)整齊度高,各OP品種內有差異。經UPGMA群叢分析與PCO(principal coordinate analysis)分析結果顯示,黃花品種與白花品種分開,F1翠寶與其他OP品種分開,但各品種內單株仍可自行叢聚。

材料先將 44個芥藍品種及四個甘藍類變種,每品種以 12株DNA混合為一樣品。以 29個RAPD引子分析,共得到 186個分子標誌,其中單型性標誌 27個,多型性標誌 159個(85%),特異性標誌有 43個,平均每個引子可產生 6.4個標誌,品種間相似度介於 0.17- 0.96,平均相似度為 0.70。以 9.印度芥藍與其他各品種平均相似度最低,甚至遠於其他甘藍變種。 38.正宗黃花芥藍與其他芥藍相似度 0.54- 0.74。除了這兩個品種, 42種芥藍中,共得到 135個標誌,其中 82個標誌具有多型性(60.7%)。將芥藍依外形分成白花群、白格林群及黃花群三群。白花群之特有標誌有 8個,群內平均相似度為 0.78,白格林群內平均相似度為 0.76,有 1個特有標誌。黃花群內平均相似度為 0.70,有 10個特有標誌。UPGMA群叢分析與PCO分析都將芥藍分為三群,分別為白花品種、白格林品種及黃花品種,與形態分類相符。其中黃花品種間差異較大,白格林品種與大部分白花品種群內差異小。

包括芥藍與甘藍類變種的相同 48個品種,以 33個ISSR引子進行分析,共得到 213個分子標誌,單型性標誌 24個,多型性標誌 189個(88.7%),特異標誌 19個,相似度介於 0.24- 0.96,平均相似度為 0.67。除 9.印度芥藍及 38.正宗黃花芥藍外, 42種芥藍中,共得到 179個標誌,58個標誌為單型性, 121個標誌具有多型性(67.6%)。其中 3個標誌為白花品種特有, 2個標誌為白格林品種特有, 5個標誌為黃花品種特有。白花群與白格林群較黃花群有較高群內相似度。經UPGMA群叢分析與PCO分析結果顯示,所搜集的芥藍品種具有相當遺傳歧異度,大致分為三群,群內仍有遺傳差異。兩種分子標誌分析結果與外表性狀─花色與葉色分群相符,同名的黑格林或白格林親緣相近。
Chinese kale (Brassica oleracea var. alboglabra), an old cultivated leafy vegetable from China is more heat tolerant and takes shorter time to harvest than other Brassica oleracea L. crops. It is grown in Taiwan for its tender leaves with once-over harvest or multiple harvest for tender stalks with inflorescence. There are many Chinese kale cultivars mostly open-pollinated with almost synonymous names just after their leaf color, leaf shape or flower color. It not only causes ambiguity in their identification but also there is little knowledge on their genetic diversity. This study uses both RAPD(random amplified polymorphic DNA)and ISSR(inter simple sequence repeat)markers to assess the genetic distances among different types and genetic similarity within the same type of Chinese kale in a total of 44 accessions each was bulked by 12 individual plants. Morphological characterization is also observed. The group of ‘Bai-gelin’ (6 cultivars) has light colored leaves with lowest Chlorophyll meter readings (about 30 unit, by SPAD) ; the group of white flowered ‘He-gelin’ (26 cultivars) has dark green leaves with high SPAD values (55-67 unit), and the group of yellow flowered (10 cvs.) has intermediate leaf color and SPAD values.
To assess the genetic variation within a cultivar, five OPs and one F1, each with eight plants were studied by 30 RAPD primers. Among 48 samples, 113 markers, of which 61 polymorphic (52%) were generated. Each primer produced 3.8 markers in average. The Jacckard’s similarity coefficient ranges between 0.31- 1.0 with an average of 0.78. The F1 ‘Cui bao’ has the greatest similarity and genetic variations exist in each of the five OP cultivars. The UPGMA dendrogram and PCO (principal coordinate)analysis depict separate clustering of the only one yellow flowered cultivar from the white flowered ones, and the F1 is distinct from the remaining 4 cultivars.
Forty four Chinese kale cultivars each bulked from 12 plants were studied together with kale, collard, cabbage and broccoli in RAPD analysis, 186 markers were generated by 29 primers. Among these, 159 markers ( 85%) were polymorphic and 43 markers are cultivar specific and each primer produced in average of 3.8 markers. The genetic similarity ranges between 0.17- 0.96 with an average of 0.70. One cultigen, ‘Indian kale’ ( 9) has the least similarity, even beyond the range of other botanical varieties of B. o. and cv. ‘True yellow flowered’ (38) has similarity coefficient ranging 0.54- 0.74. Excluding these two, 42 Chinese kale accessions generated 135 markers with 82 (60.7) being polymorphic. Three groups by morphology are characterized as ‘white flowered’, light colored leaf type, and ‘yellow flowered’ There are 8, 1, and 10 group-specific markers , respectively with these three groups. The UPGMA dendrogram and PCO analysis has the same result of grouping and more genetic variation exists in the yellow flowered group than in other two groups.
ISSR analysis was conducted in the same 44 Chinese kale cultivars and 4 varieties of B. o. L. , 213 markers were amplified with 189 polymorphic ones (85%) by 33 ISSR primers. There are 19 cultivar-specific bands and the genetic similarity coefficient ranges between 0.24-0.96 with an average of 0.67. Among 42 Chinese kale accessions (excluding ‘Indian kale’ and ‘True yellow flowered kale’), there are 179 markers and 121 being polymorphic (67.6%). There are 3 unique bands in ‘white flowered’ group, 2 in ‘light colored leaf type’, and 5 in ‘yellow flowered’ group. More genetic relatedness appears in groups of ‘White flowered’ and “light leaf colored’ than in ‘yellow-flowered’ Both UPGMA dendrogram and PCO plot showed similar grouping as in RAPD analysis. There is genetic divergence among as well as within the three groups based on both molecular markers and the grouping goes in accordance with the morphological traits- flower color and leaf color.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目 錄 vii
圖表目錄 viii
壹、前言 1
貳、前人研究 3
参、材料與方法 12
肆、結果 17
伍、討論 73
參考文獻 76
附錄 83
台灣地區現有作物栽培品種名錄-十字花科篇。1994。台灣省農業試驗所特刊 43號。台灣省農業試驗所編印。
陳文達。1720。台灣縣志第一冊。台灣省文獻委員會印行。台灣。
吳其濬著(清),王雲五主編。1965。萬有文庫薈要--植物名實圖考。台灣商務印書館印行。台北市。
沈再發。1998。甘藍類蔬菜育種。蔬菜育種技術研討會專刊 p145-159。
林若琇。1958。國立台灣大學農學院叢書第四號--蔬菜來源考。國立台灣大學農學院。
胡昌熾。蔬菜學各論。1966。台灣中華書局。台北。
胡凱康。1995。作物品種鑑定技術之進展。蔬菜育種技術研習會專刊 p77-84。
徐玲明。1996。三種蕓苔屬蔬菜熱馴化與耐熱性之研究。國立中興大學園藝學研究所碩士論文。
浙江農業大學。1987。蔬菜栽培學各論。中國農業出版社。北京
陳培桂纂輯。1871。淡水廳志。台灣銀行。台北市。
陳裕星、郭俊毅、秦立德. 2001。以RAPD分析豌豆種源遺傳歧異度之研究。台中區農業改良場研究彙報72: 63-76。
陳榮芳、羅筱鳳。1993。分子標誌因子在蔬菜品種改良上之利用。蔬菜生產與發展研討會專刊p103-120。
農業委員會。2005。台灣農家要覽-農作篇(二)。豐年社。臺北市。
劉邦基、張有明、許華欣。1998。生物技術在蔬菜育種上的應用。蔬菜育種技術研習會專刊 p133-144。
劉英、王超。2006。簡述甘藍類植物的起源及分類。北方園藝4: 58-60。  
劉海濤、關佩聰。1997。黃花芥藍與白花芥藍的分類學關係。華南農業大學學報18 :13-16
劉海濤、關佩聰。1998。芥藍的分類學研究。華南農業大學學報19: 82-86
顏綸澤。1962。蔬菜大全。台灣商務印書館。台北。
行政院農業委員會區域農業經濟資料庫查詢系統。2007年7月。http://ag.coa.gov.tw/93/agriculture/name.htm。
Aguinagalde, I., Gómez-Campo, C. and Sánchez-Yélamo, M. D. 1992. A chemosystematic survey on wild relatives of Brassica oleracea L. Bot. J. of the Linnean Society 109:57-67.
Ammiraju, J. S. S., B. B. Dholakin and D. K. Santra. 2001. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Thcor Apl Genet. 102:726-732.
Arnau, G., J. Lanllemand, and M. Bourgoin. 2002. Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129:69-79.
Arumuganathan K. and Earle E. D. 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 211–215.
Astarinia, I. A., J. A. Plummera, R. A. Lancasterb and G. Yan. 2006. Genetic diversity of Indonesian cauliflower cultivars and their relationships with hybrid cultivars grown in Australia. Scientia Horticulturae. 108:143-150
Axelsson T., Bowman C.M., Sharpe A.G., Lydiate D.J. and Lagercrantz U. 2000. Amphiploid Brassic juncea contains conserved progenitor genomes. Genome 43: 679–688.
Bohuon E.J.R., Keith D.J., Parkin I.A.P., Sharpe A.G. and Lydiate D.J. 1996. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor. Appl. Genet. 93: 833–839.
Bornet, B., M. Branchard. 2001. Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol. Boil. Rep. 19:209-215.
Cansian, R. L. and S. Echeverrigaray.2000. Discrimination Among Cultivars of Cabbage (Brassica oleracea var. capitata) using Randomly Amplified Polymorphic DNA Markers. Hortscience. 35:1155-1158.
Chaparro, J. X., D. J. Werner, D. O. Malley, and R. R. Sederoff. 1994. Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor. Appl. Genet. 87: 805-815.
Charterers, Y. M., A. Robertson, M. J. Wilkinson, and G. Ramsay. 1996. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5’-anchored simple sequence repeat (SSR) primers. Theor. Appl. Genet. 92:442-447.
Demeke, T., R. P. Adams and R. Chibbar. 1992. Potential taxonomic use of random amplified polymorphic DNA (RAPD): a case study in Brassica. Theor Appl Genet 84:990-994
Demoke, T., D. R. Lynch, L. M. Kawchuk, G. C. Kozub, and J. D. Armstrong. 1996. Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep. 15:662-667.
Dias, J.S. and A.A. Monteiro. 1994 Taxonomy of Portuguese tronchuda cabbage and Galega kale landraces using morphological characters, nuclear RFLPs, and isozyme analysis: A review. Euphytica 79, 1994, 115-126.
Dias, J.S.; A.A. Monteiro & S. Kresovich. 1994. Genetic diversity and taxonomy of Portuguese tronchudacabbage and Galega kale landraces using isozyme analysis. Euphytica 75, 221-230.
Dias, J.S.; M.B. Lima; K.M. Song; A.A. Monteiro; P.H. Williams; T.C. Osborne. 1992. Molecular taxonomy of Portuguese Tronchuda cabbage and kale landraces using nuclear RFLPs. Euphytica 58:221-229
Dias, J.S.; Monteiro, A.A.; Lima, M.L. 1993. Numerical taxonomy of Portuguese Tronchuda cabbage and Galega kale landraces using morphological characters. Euphytica 69, 51-68
Divaret, I., E. Margale and G. Thomas.1999. RAPD markers on seed bulks efficiently assess the genetic diversity of a Brassica oleracea L. collection. Theor Appl Genet. 98: 1029-1035
Dixelius C. and Wahlberg S. 1999. Resistance to Leptosphaeria maculans is conserved in a specific region of the Brassica B genome. Theor. Appl. Genet. 99: 368–372.
Fang, D. Q. and M. L. Roose. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408-417.
Farnham, M. W., 1996. Genetic variation among and within United States collard cultivars and landraces as determined by randomly amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci.121:374-379
Geraci, A., I. Divaret, F. M. Raimondo and A. M. Chèvre. 2001. Genetic relationships between Sicilian wild populations of Brassica analysed with RAPD markers. Plant Breeding 120:193-196
Gómez-Campo, C. 1999. Biology of Brassica coenospecies. Elsevier Science B. V., Amsterdam.
Heen, W. K., B.Y. Chen, B.F. Cheng, A. Jonsson, V. Simonsen, R.B. Jørgensen and J. Davik. 1995. Characterization of A and C genome of Brassica campestris and B. alboglabra. Hereditas 123: 251-267.
Helm. J. 1963. Morphologisch-taxonomische Gliederung der Kultursippen von Brassica oleracea L. Kulturpflanze 11:92-210
Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome-specific DNA markers of Brassica and the evolution of amphidiploids and n=9 diploid species. Genome 33:131-142
Hossain, M.M., T. Asahira, S. Yazawa and H. Inden. 1994. Heat-tolerant interspecific hybrids between Brassica oleracea L. and B. campestris L. for the tropics, Proceeding of 24th International Horticultural Congress held on 21-27 August, 1994, Kyoto, Japan: 79
Hu J, Quiros CF (1991) Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep 10: 505-511
Kamiński, P., M. Staniaszea, and E. U. Kozik. 2003. Evaluation of genetic diversity and uniformity of head cabbage DH lines by the use of RAPD markers. J. Appl. Genet. 44:157-163.
Kantety, R. V., X. Zeng, J. L. Bennetzen, and B. E. Zehr. 1995. Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter simple sequence repeat (ISSR) amplification. Mol. Breeding 1:365-373.
Kennard, W. C., M. K. Slocum, S. S. Figdore and T. C. Osborn. 1994. Genetic analysis of morphological variation in Brassica oleracea using molecular markers. Theor Appl Genet. 87:721-732
Klein-Lankhorst, R. M., A. Vermunt, R.Weide, T. Liharska, and P. Zabel. 1991. Isolation of molecular markers for tomato (L. esculentum) using random amplified polymorphic DNA (RAPD). Theor.Appl. Genet. 83:108-114.
Kobayashi, M., K. Nomura, K. Yoneda, R. Shishido, J. Y. Kuo and H. Ikehashi. 2003. Isozyme variation in native varieties of Chinese kale (Brassica oleracea var. alboglabra) in Taiwan. Japanese Journal of Tropical Agriculture. 47: 266-272
Kojima, T., Nagaoka T., Noda K., Ogihara Y. 1998. Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP marker. Theor. Appl. Genet. 96: 37-45.
Koutita, O., K. Tertivanidis, T. V. Koutsos, M. Koutsika-Sotiriou and G. N. Skaracis. 2005. Genetic diversity in four cabbage populations based on random amplified polymorphic DNA markers. The Journal of Agricultural Science 143: 377-384
Kresovich S., J. G. K. Williams, J. R. McFerson, E. J. Routman, and B. A. Schaal. 1992. Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190-196.
Lannér-Herrera, C., M. Gustafsson, A. S. Falt and T. Bryngelsson. 1996.Diversity in natural populations of wild Brassica oleracea as estimated by isozyme and RAPD analysis. Genetic Resources and Crop Evolution 43: 13-23.
Lázaro, A. and I. Aguinagalde. 1996. Molecular characterisation of wild relatives of Brassica oleracea L. (n=9). Cruciferae Newsletter 18:24-25.
Lázaro, A. and I. Aguinagalde. 1996. Phylogenetic relationships between the wild taxa of the Brassica oleracea L. group (2n=18) using random amplified polymorphic DNA assay. Scientia Horticulturae 65: 219-227.
Lázaro, A. and I. Aguinagalde. 1998. Genetic diversity in Brassica oleracea L. (Cruciferae) and wild relatives (2n=18) using isozymes. Annals of Botany 82: 821-828.
Lázaro, A. and I. Aguinagalde. 1998. Genetic diversity in Brassica oleracea L. (Cruciferae) and wild relatives (2n=18) using RAPD markers. Annals of Botany 82: 829-833.
Leory, X. J., K. Leon, J. M. Hily, and P. Chaumeil. 2001. Detection of in vitro culture-induced instability through inter-simple sequence repeat analysis. Theor Appl. Genet. 102:885-891.
Leroy, X. J., K. Leon and M. Branchard. 2000. Characterisation of Brassica oleracea L. by microsatellite primers Plant Syst. Evol. 225:235-240
Liu, A. H. and J. B. Wang. 2006. Genomic evolution of Brassica allopolyploid revealed by ISSR marker. Genetic Resources and Crop Evolution. 53: 603-611.
Mailer, R. J., R. Scarth, and B. Fristensky. 1994. Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers. Theor. Appl. Genet. 87:697-704.
Martins, M., D. Sarmento, and M. M. Oliveira. 2004. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 23:492-496
Matsui, T., N. Okuda, and Y. Kosugi. 2002. Classification of chinese kale cultivars by RAPD analysis. J. Japan. Soc. Hort. Sci. 71: 499-503.
McRoberts, N., R. P. Finch. W. Sinclair. A. Meikle. G. Marshall. G. Squire and J. McNicol. 1999. Assessing the ecological significance of molecular diversity data in natural plant population. J. Exp. Bot. 50:1635-1645.
Mondal, T. K. 2002. Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter simple sequence repeat polymerase chain reaction. Euphytica 128:307-315.
Muhammet, T., and P. D. Griffiths. 2004. Genetic relationships of Brassica vegetables determined using database derived simple sequence repeats. Euphytica. 137:193-201.
Okuda, N., and Y. Fujime. 1996. Plant growth characters of chinese kale (Brassica oleracea L. var. alboglabra). Acta Hort. 407:55-59.
Okuda, N., and Y. Fujime. 1996. Seed production of chinese kale (Brassica oleracea L. var. alboglabra L. H. Bailey). Acta Hort. 467:317-323.
Okumus, A. and A. Balkaya. 2007. Estimation of genetic diversity among Turkish kale populations ( Brassica oleracea var. acephala L.) using RAPD markers. Russian Journal of Genetics. 43:411-415.
Palmer JD, Shields CR, Coehn DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181 189
Phippen, W. B., S. Kresovich., F. G. Candelas. and J. R. McFerson. 1997. Molecular characterization can quantify and partition variation among genebank holdings: a case study with phenotypically similar accessions of Brassica oleracea var. capitata L. (cabbage) ‘Golden Acre’. Theor Appl Genet 94: 227–234
Plieske J., Struss D. and Robbelen G. 1998. Inheritance of resistance derived from the B-genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor. Appl. Genet. 97: 929–936.
Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot 55:1-57
Preston, L.R., N. Harker, T. Holton, and M. K. Morell. 1999. Plant cultivar identification using DNA analysis. Plant Var. Seeds 12:191-205.
Prevost, A. and M. J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98:107-112
Quiros CF, Ochoa O, Kianian SF, Douches DS (1987) Analysis of the Brassica oleracea genome by the generation of B. campestris-oleracea chromosome addition lines: characterization by isozymes and rDNA genes. Theor Appl Genet 74:758-766
Rao, V. R. and T. Hodgkin. 2002. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68: 1–19.
Ren, J., J. R. McFerson, R. Li, S. Kresovich, and W. F. Lamboy. 1995. Identities and relationships among chinese vegetable Brassicas as determined by random amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci. 120:548-555.
Rout, G. R. and A. Mohapatra. 2006. use of molecular markers in ornamental plants: a critical reap praisal. Europ. J. Hort. Sci. 71: 53-68.
Sebastian, R. L., E. C. Howell, G. J. King, D. F. Marshall, and M. J. Kearsey. 2000. An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Apple Genet 100:75-81.
Snogerup, S., M. Gustafsson and R. Bothmer von. 1990. Brassica sect. Brassica (Brassicaeae). I. Taxonomy and variation. Wildenowia 19: 271-365.
Song K. M., Osborn T. C., Williams P. H. (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa (syn. campestris) and B. oleracea. Theor. Appl. Genet. 76: 593-600.
Song K., Lu P., Tang K. and Osborn T.C. 1995. Rapid genomic change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc. Natl. Acad. Sci. USA. 92: 7719–7723.
Song, K. M., Osborn, T. C. and Williams, P. H. 1990. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theor. Appl. Genet. 79:47-506.
Song, K., T. C. Osborn and P. H. Williams. 1990. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Gent 79:497-506
Stork, A. L., Snogerup, S. and Wűest, J. 1980. Seed characters in Brassica section Brassica and some related groups. Candollea 35:421-450.
Szewc-McFadden, A. K., S. Kresovich, S. M. Bliek, S. E. Mitchell, and J. R. McFerson. 1996. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor. Appl. Genet. 93:534-538.
Tonguç, M. and P. D. Griffiths. 2004. Genetic relationships of Brassica vegetables determined using database derived simple sequence repeats. Euphytica. 137:193-201
Tsunoda, S., K. Hinata and C. Gómez-campo. 1980. Brassica crops and wild allies biology and breeding. Japan Scientific Societies Press, Tokyo
Vaughan, J.G. 1977. A multidisciplinary study of the taxonomy and origin of Brassica crops. BioScience 27:35-40
Vaughan, J.G., A. J. Macleod and B. M. G. Jones. 1976. The biology and chemistry of the cruciferae . Academic Press, London
Waters E.R. and Schaal B.A. 1996. Biased gene conversion is not occurring among rDNA repeats in the Brassica triangle. Genome 39: 150
Waugh, R. and W. Powell. 1992. Using RAPD markers for crop improvement. Trends in Biotech. 10: 186-191.
Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as geneticmarkers. Nucleic Acids Res. 18: 6531-6535.
Wolfe, A. D., Q. Y. Xiang and S. R. Kephart. 1998. Diploid hybrid speciation in Penstemon (Scrophulariaceae). Proc Natl Acad Sci USA. 95:5112-5115.
Wollf K., E. Zeitkiewicz, and H. Hofstra. 1995. Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns. Theor. Appl. Genet. 91:439-447.
Yamamoto, T., T. Kimura, M. Shoda, T. Imai, T. Saito, Y. Sawamura, K. Kotobuki, T. Hayashi, and N. Matsuta. 2002. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor. Appl. Genet. 106:9-18.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊