跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳俊帆
研究生(外文):Chun-Fan Chen
論文名稱:細菌素生產菌之分離與鑑定及生產條件之初步探討
論文名稱(外文):Isolation and Identification of a Bacteriocin-Producing Strain and Preliminary Investigation of Bacteriocin Production by the Isolate
指導教授:黃健雄黃健雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:細菌素枯草桿菌
外文關鍵詞:bacteriocinBacillus subtilis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌素是由細菌所產生具有抑菌效果的蛋白質,可以殺菌或者抑制他種細菌的生長,目前被認為在食品工業上極具發展潛力。本研究室自臺北縣市各地採集約 80 個樣品進行篩選分離,經初步篩選得到 24 個可生成具有抑菌活性的樣品。同時,使用購買自食品工業發展研究所的菌株 Bacillus subtilis BCRC 10447 建立檢測抑菌活性的條件。再將篩選所得具有抑菌活性的菌株單株分離後,進行檢測。菌株 6-1-1 所生產之細菌素於檢測中發現具有較廣泛的抑菌範圍,可抑制格蘭氏陽性菌 ( Micrococcus luteus 和 Bacillus subtilis ) 及陰性菌 ( Escherichia coli ),因此選擇其作為本研究之篩選菌株。根據細胞染色、生化測試及 16S rDNA 序列分析比對結果,初步鑑定菌株 6-1-1 屬於 B. subtilis。選擇 tryptic soy broth ( TSB ) 為基礎培養基,探討本菌株之最適生產條件。三角瓶培養結果:於 TSB 培養基中加入 2% 之 KH2PO4 及 0.25% 之 tryptone,同時起始 pH 值控制在 7.0,進行 30 oC 下的培養,可以有效將菌體量 ( OD600 ) 從 6.0 提升至 8.2,抑菌活性也由 640 A.U./mL 提高至 2560 A.U./mL。
Bacteriocins are proteinaceous compounds lethal to bacteria other than the producing strain. As a group, they are considered having potential application on the food industry. The purposes of this study were collecting of Bacillus subtilis ATCC 6633 ( BCRC 10447 ) from BCRC to set up the antimicrobial detection model and using the model to screen and isolate the bacteria from 80 samples including waters, soils, and sands around Taipei city. First, there were 24 bacteria selected by initial screening. Finally we chose strain 6-1-1 which has the broader activity spectrum, including Micrococcus luteus, Bacillus subtilis G(+), and Escherichia coli G(-). Beside antimicrobial activity analysis, we had accomplished bacteria identification according to its morphological characters and biochemical activities. Strain 6-1-1 is classified to Bacillus subtilis. Then we tried to optimize the growth conditions. The optimal medium compositions are adding 0.25% tryptone, and 2% KH2PO4 in TSB, controlled pH at 7.0. Furthermore, the optimal growth conditions are culturing with 50 mL medium in a 250 mL Erlenmeyer flask at 30 oC. Under these conditions, biomass concentrations expressed as OD600 were increased from 6.0 to 8.2, and the antimicrobial activity were increased from 640 A.U. mL-1 to 2560 A.U. mL-1.
第一章 緒 論…………………………………………………………………………1
一、細菌素…………………………………………………………………………1
1-1 細菌素之起源及分類……………………………………………………1
1-2 影響細菌素生成之因子…………………………………………………5
1-3 細菌素之應用……………………………………………………………7
二、研究動機與目的……………………………………………………………11
三、研究架構……………………………………………………………………12
第二章 材料與方法…………………………………………………………………13
一、藥品試劑……………………………………………………………………13
二、實驗菌株……………………………………………………………………13
2-1 指標菌株…………………………………………………………………13
2-2 篩選菌株…………………………………………………………………13
三、培養方法……………………………………………………………………16
3-1 三角瓶搖瓶培養…………………………………………………………16
3-2 最適條件的探討…………………………………………………………17
四、分析方法……………………………………………………………………18
4-1 菌體濃度測試……………………………………………………………18
4-2 抑菌活性測試……………………………………………………………18
4-3 篩選菌株初步鑑定………………………………………………………20
五、儀器設備……………………………………………………………………22
六、引子…………………………………………………………………………22
第三章 結果與討論…………………………………………………………………23
一、 進行採樣及採樣地點資料整理……………………………………………23


二、以生產具有抑菌活性的細菌素 subtilin 之 Bacillus subtilis BCRC 10447建立檢測抑菌活性的條件…………………………………………………24
2-1 建立確定具有抑菌活性菌株流程………………………………………24
2-2 建立抑菌物質抑菌活性量化流程………………………………………27
三、野生菌株分離及篩選………………………………………………………29
四、分離菌株初步鑑定…………………………………………………………34
五、分離菌株之最適生長條件…………………………………………………40
5-1 最適培養基的選擇………………………………………………………40
5-2 磷酸鹽類添加濃度之探討………………………………………………40
5-3 碳源添加型式之探討……………………………………………………40
5-4 氮源添加型式之探討……………………………………………………45
5-5 最適起始 pH 值之探討…………………………………………………49
5-6 最適培養溫度之探討……………………………………………………49
5-7 最適通氣量之探討………………………………………………………52
第四章 結 論………………………………………………………………………54
第五章 參考文獻……………………………………………………………………56
何詩琥。2004。抗微生物胜肽,天蠶素及對蝦素,在草蝦免疫上之研究。國立臺灣大學動物學研究所博士論文。

林宇慶。1999。N-醯化胺基酸消旋酶及 D-胺基醯化酶生產菌之篩選及菌種特性分析。國立臺灣大學農業化學研究所碩士論文。

林嘉鎮。2001。不同來源乳酸菌之特性探討分子檢測鑑定及應用。國立中興大學食品科學所碩士論文。

翁培化。2006。Erwinia carotovora subsp. carotovora 低分子量細菌素選殖與表現。國立中興大學化學系碩士論文。

孫豫蘋。1993。Pediococcus damnosus ACCEL, FS-211 及 Leuconostoc dextranicum L-1/6 之細菌素特性研究與生產因子之探討。國立海洋大學水產食品科學研究所碩士論文。

郭小翠。2002。利用重組大腸桿菌大量表現吳郭魚之類胰島素生長因子第一型。國立臺灣大學農業化學研究所碩士論文。

曾瑋盈。2007。一新分離枯草菌所產生細菌素之部份特性鑑定。國立臺灣大學微生物與生化學研究所碩論文。

詹淑淳。2006。分離自豬隻腸道糞腸球菌所產生腸球素之特性分析。國立中興大學獸醫微生物研究所碩士學位論文。

廖啟成。1992。抑菌素及其應用。食品工業發展研究所菌種保存及研究簡訊 6 ( 3 ):1-7。

潘崇良、張啟華、郭鴻均、郭俊德。1995。乳酸菌細菌素之抑菌力及對泥鰍若干菌群之影響。中國農業化學會誌 33:444-485。

Abee, T., T. R. Klaenhammer and L. Letellier. 1994. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl. Environ. Microbiol. 60:1006-1013.

Ahern, M., S. Verschueren, and D. V. Sinderen. 2003. Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol. Lett. 220:127-131.

Anand, T. P., A. W. Bhat, Y. S. Shouche, U. Roy, J. Siddharth, and S. P. Sarma. 2006. Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiological Research 161:252-262.

Axelsson, L., T. Katla, M. Bjornslett, V. G. Eijsink, and A. Holck. 1998. A system for heterologous expression of bacteriocins in Lactobacillus sake. FEMS Microbiol. Letter 168:137-143
Aymerich, T., H. Holo, L. S. Havarstein, M. Hugas, M. Garriga, and I. F. Nes. 1996. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microbiol. 62:1676-1682.

Benson, H. J. 2002. Microbiological applications:Laboratory manual in general microbiology. McGraw-Hill.

Bhunia, A. K., M. C. Johnson, and B. Ray. 1988. Purification, characterization, and antimicrobial spectrum of a bacteriocin produced by Pediococcus acidilactici. J. Appl. Bacteriol. 65:261-268.

Biswas, S. R., P. Ray, M. C. Johnson, and B. Ray. 1991. Influence of growth condition on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57:1265-1267.

Bizani, D., and A. Brandelli. 2004. Influence of media and temperature on bacteriocin production by Bacillus cereus 8A during batch cultivation. Appl. Microbiol. Biotechnol. 65:158-162.

Boman, H. G. 1991. Antibacterial peptides:key components needed in immunity. Cell. 65:205-207.

Buchnan, R. L., and L. A. Hawitter. 1992. Effectiveness of Carnobacterium piscicola LK5 for controling the growth of Listeria monocytogenes Scott A in refrigeration foods. J. Food Safety. 12:219-236.


Cappuccino, J. G., and N. Sherman. 1999. Microbiology:A laboratory manual. Fifth edition. Addison Wesley Longman, Inc. New York. pp. 133-187.

Choi, S. Y., and L. R. Beuchat. 1994. Growth inhibition of Listeria monocytogenes by a bacteriocin of Pediococcus acidilactici M during fermentation of kimchi. Food Microbiol. 11:301-307.

Chen, P. T., and Y-P. Chao. 2006. Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors. Biotechnol. Lett. 28:1595-1600.

Cintas, L. M., J. M. Rodriguez, M. F. Fernandez, K. Sletten, I. F. Nes, P. E. Hernandez, and H. Holo. 1995. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum. Appl. Environ. Microbiol. 61:2643-2648.

Cleveland, J., T. J. Montville, I. F. Nes, M. L. Chikindas. 2001. Bacteriocins:safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71:1-20.

Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272:12008-12013.

Coventry, M. J., M. W. Hickey, and K. Muirhead. 1995. Partial characterization of pediocin PO/sub 2/ and comparison with nisin for biopreservation of meat products. Int. J. Food Microbiol. 26:133-145.

Cutter, C. N., and G. R. Siragusa. 1996. Long-term storage stability of the bacteriocin propionicin PLG-1 produced by Propionobacterium thoenii and potential packaging. Food Microbiol. 13:23-33.

Daba, H., S. Pandian, J. F. Gosselin, R. E. Simard, and C. Lacroix. 1991. Detection and activity of a bacteriocin produced by Leuconostoc mesenteroids. Appl. Environ. Microbiol. 57:3450-3455.

Dave, R. I., P. Sharma, J. Jolson, K. Muthukumarappan, and D. R. Henning. 2003. Effectiveness of Microgard in controlling Escherichia coli O157:H7 and Listeria cmonocytogenes. J. Food Sci. Technol. 40:262-266.

Davey, G. P., and B. C. Richardson. 1981. Purification and some properties of diplococcin from Streptococcus cremoris. Appl. Environ. Microbiol. 41:84-89.

Delevs-Broughton, J. 1990. Nisin and its uses as a food preservative. Food Prot. 10:100-117.

Destoumieux, D., P. Bulet, D. Loew, A. V. Dorsselaer, J. Rodriguez, and E. Bachere. 1997. Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei ( Decapoda ). J. Biol. Chem. 272:28398-28406.

Drider, D., G. Fimland, Y. Hechard, L. M. McMullen, and H. Prevost. 2006. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70:564-582.

Ennahar, S., D. Aoude-Werner, O. Sorokine, A. Van Dorsselaer, F. Bringel, J-C. Hubert, and C. Hasselmann. 1996. Production of Pediocin AcH by Lactobacillus plantarum WHE 92 isolated from cheese. Appl. Environ. Microbiol. 62:4381-4387.

Fang, T. J., and Y. S. Shiuann. 1995. Production and property of a bacteriocin-like inhibitor from Lactococcus lactis DY 11212. Food Technology 22:479-493.

Foulquie Moreno, M. R., P. Sarantinopoulos, E. Tsakalidou, and L. De Vuyst. 2006. The role and application of enterococci in food and health. Int. J. Food Microbiol. 106:1-24.

Franz, C. M. A. P., U. Schillinger, and W. H. Holzapfel. 1996. Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int. J. Food Microbiol. 29:255-270.

Franz, C. M., M. J. van Belkum, R. W. Worobo, J. C. Vederas, and M. E. Stiles. 2000. Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A:the immunity gene confers cross-protection to enterocin B. Microbiology 146 ( Pt3 ):621-631.

Garver, K. I., and P. M. Muriana. 1994. Purification and partial amino acid sequence of Curvaticin FS47, a heat-stable bacteriocin produced by Lactobacillus curvatus FS47. Appl Environ Microbiol. 60:2191-2195.

Gaevie, E. I. 1986.Genus Leuconostoc. In Bergey’s Manual of Systematic Bacteriology, Vol. 2 ( Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J.G. Holt ed. ). Baltimore:Willams and Wikins. pp. 1071-1075.

Geisen, R., B. Becker, and W. H. Holzapfel. 1993. Bacteriocin production of Leuconostoc carnosum LA54A at different combination of pH and temperature. J. Indust. Microbiol. 12:337-340.

Graciela, M., M. Vignolo, N. de Kairuz, A. P. Aida, H. de Ruiz, and G. Oilver. 1995. Influence of growth conditions on the production of lactocin 705, a bacteriocin produced by Lactobacillus casei CRL 705. J. Appl. Bacteriol. 78:5-10.

Hastings, J. W., M. Sailer, K. Johnson, K. Ray, J. C. Vederas, and M. E. Stiles. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol. 173:7491-7500.

Hernández, D., E. Cardell, and V. Zárate. 2005. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese:initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J. Appl. Microbiol. 99:77-84.

Hong, Y., and D. G. Brown. 2006. Cell surface acid-base properties of Escherichia coli and Bacillus brevis and variation as a function of growth phase, nitrogen source and C:N ratio. Collids and Surfaces B:Biointerfaces. 50:112-119.

Hsieh, H. Y., B. A. Glatz, and H. D. Paik. 1996. Improvement of detection and production of propionicin PLG-1, a bacteriocin production by Propionibacterium thoenii. J. Food Prot. 59:734-738.

Hurst, A. 1981. Nisin. Advances Appl. Microbiol. 27:85-123.

Joerger, M. C., and T. R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J. Bacteriol. 167:439-446.

Joerger, R. D. 2002. Alternatives to antibiotics:bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science. 82:640-647.

Kaiser, A. L., and T. J. Montville. 1996. Purification of the bacteriocin Bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Appl. Environ. Microbiol. 62:4529-4535.

Kalmokoff, M. L., S. K. Banerjee, T. Cyr, M. A. Hefford, and T. Gleeson. 2001. Indentification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Appl. Environ. Microbiol. 67:4041-4047.

Kamoun, F., H. Mejdoub, H. Aouissaoui, J. Reinbolt, A. Hammami, and S. Jaoua. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. Journal of Applied Microbiology 98:881-888.

Kirillova, Yu. M., E. O. Mikhailova, N. P. Balaban, A. M. Mardanova, A.R. Kayumov, G. N. Rudenskaya, S. V. Kostrov, and M. R. Sharipova. 2006 Biosynthesis of Bacillus intermedius subtilisin-like serine proteinase by the recombinant Bacillus subtilis strain. Microbiol. 75:142-147.

Klaenhammer, T. R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12:39-85.

Kordel, M. and H. G. Sahl. 1986. Susceptibility of bacterial eukaryotic, and artificial membranes to the disruptive action of the cationic peptides pep 5 and nisin. FEMS Microbiol. Lett. 34:139-144.

Larsen, A. G., F. K. Vogeensen, and J. Josephsen. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs:Purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus M1401. J. Appl. Bacteriol. 75:113-122.

Le Marrec, C., B. Hyronimus, P. Bressollier, B. Verneuil, and M. C. Urdaci. 2000. Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I. Appl. Environ. Microbiol. 66:5213-5220.

Lee, J. Y., A. Boman, S. Chuanxin, M. Anderson, H. Jounvall, V. Mutt, and H. G. Boman. 1989. Antibacterial peptides from pig intestine:isolation of a mammalian cecropin. Proc. Natl. Acad. Sci. USA. 86:9159-9162.

Lewus, C. B., A. Kaiser and T. J. Montville. 1991. Inhibition of foodborne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Appl. Environ. Microbiol. 57:1683-1688.

Lewus, C. B., S. Sun, and T. J. Montville. 1992. Production of an amylase-sensitive bacteriocin by an typical Leuconostoc paramesenteroides strain. Appl. Environ. Microbiol. 58:143-149.

Martín-Platero, A. M., E. Valdivia, M. Ruíz-Rodríguez, J. J. Soler, M. Martín-Vivaldi, M. Maqueda, and M. Martínez-Bueno. 2006. Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10-3, isolated from the Uropygial Gland of the Hoopoe ( Upupa epops ). Appl. Environ. Microbiol. 72:4245-4249.

Mattick, A. T. R., and A.Hirsch. 1947. Further observation on an inhibitory substance ( nisin ) from lactic streptococci. Lancet. 2:5-7.

Mayr-Harting, A., A. J. Hedges, and C. W. Berkeley. 1972. Methods for studying bacteriocins. In Methods in Microbiology ( Norris, J. R., and D. W. Ribbons. eds.) New York:Academic Press Inc. pp. 316-422.

McAuliffe, O., R. P. Ross, and C. Hill. 2001. Lantibiotics:structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285-308.

Moll, G. N., W. N. Konings, and A. J. Driessen. 1999. Bacteriocins:mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76:185-198.

Motlagh, A. M., S. Holla, M. C. Johnson, B. Ray, and R. A. Field. 1992. Inhibition of Listeria spp. In sterile food systems by pediocin AcH, a bacteriocin produced by Pediococcus acidilactici H. J. Food Prot. 55:337-343.

Mørtvendt, C. J., J. Nissen-Meyer, K. Sletten and I.F. Nes. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L 45. Appl. Environ. Microbiol. 57:1829-1834.

Nes, I. F., D. B. Diep, L. S. Havarstein, M. B. Brurberg, V. Eijsink, and H. Holo. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113-128.

Nettles, C. G., and S. F. Barefoot. 1993. Biochemical and genetic characteristics of bacteriocins of food-associated lactic acid bacteria. J. Food Prot. 56:338-356.

Nielsen, J. W., J. S. Dickson, and J. D. Crouse. 1990. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated wih fresh meat. Appl. Environ. Microbiol. 56:2142-2145.

Nissen-Meyer, J., H. Holo, L. S. Havarstein, K.Sletten, and I. F. Nes. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. J. Bacteriol. 174:5686-5692.

O’Keeffe, T., C. Hill, and R. P. Ross. 1999. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococus faecium DPC1146. Appl. Environ. Microbiol. 65:1506-1515.

Okereke, A., and T. J. Montvill. 1991. Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Appl. Environ. Microbiol. 57:3423-3428.

Oscáriz, J. C., I. Lasa, and A. G. Pisabarro. 1999. Detection and characterization of cerein 7, a new bacteriocin produced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol. Lett. 178:337-341.

Oscáriz, J. C., L. Cintas, H. Holo, I. Lasa, I. F. Nes, and A. G. Pisabarro. 2006. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 254:108-115.

Palleroni, N. J., A. M. Port, H-K. Chang, and G. J. Zylstra. 2004. Hydrocarboniphaga effuse gen. nov., sp. nov., a novel member of the g-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int. J. System. Evo. Microbiol. 54:1203-1207.

Pattnaik, P., S. Grover, and V. K. Batish. 2005. Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocinlike compound produced by Bacillus licheniformis 26L-10/3RA. Microbiological Research 160:213-218.

Piard, J. C., P. M. Muriana, M. J. Desmazeaud and T. R. Klaenhammer. 1992. Purification and partial characterization of lacticin 481, a lanthionine-containing bacteriocin produced by Lactobacillus lactis subsp. Lactis CNRZ481. Appl. Environ. Microbiol. 58:279-284.

Pierce J. A., C. R. Robertson, and T. J. Leighton. 1992. Physiological and genetic strategies for enhanced subtilisin production by Bacillus subtilis. Biotechnol. Prog. 8:211-218.

Pilet, M. R., R. Barre, M. Desmazeand, X. Douosset, G. Novel, and J. C. Piard. 1995. Evidence for two bacteriocins produced by Carnobacterium piscicola and Carnobacterium divergens isolated from fish and active against Listeria monocytogenes. J. Food Prot. 58:256-262.

Pongtharangkul, T. and A. Demirci. 2004. Evaluation of agar diffusion bioassay for nisin quantification. Appl. Microbiol. Biotechnol. 65:268-272.

Rammelsberg, M., and F. Radler. 1990. Antibacterial polypeptides of Lactobacillus species. J. Appl. Bacteriol. 69:177-184.

Rayman, K., and A. Hurst. 1984. Nisin:properties, biosynthesis and fermentation. In Biotechnology of Industrial Antibiotics. ( Vandamme, E. J. ed.).New York:Marcel Dekker, Inc., pp.607-628.

Reeves, E. T., and A. Maguire. 1969. Surfactants as stimulants of enzyme production by microorganism. Appl. Microbiol. 17:242-245.

Reeves, P. 1965. The bacteriocins. Bacteriol. Rev. 29:24-45.

Riley, M. A., and J. E. Wertz. 2002. Bacteriocin diversity:ecological and evolutionary perspectives. Biochim. 84:357-364.

Gogers, L. A., and E. D. Whittier. 1928. Limiting factors in lactic fermentation. Journal of Bacteriology. 16:211-229.

Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation:past, present and future. Int. J. Food Microbiol. 79:3-16

Schillinger, U., Stiles, M. E., and W. H. Holzapfel. 1993. Bacteriocin production by Carnobacterium piscicola LV61. Int. J. Food Microbiol. 20:131-147.

Scott, V. N., and S. L. Taylor. 1981. Temperature, pH, and spore load effects on the ability of nisin to prevent the outgrowth of Clostridium botulinum spores. J. Food Sci. 46:121-126.

Setyorini E., S. Takenaka, S. Murakami, and K. Aoki. 2006. Purification and characterization of two novel halotolerant extracelluar proteases from Bacillus subtilis strain FP-133. Biosci. Biotechnol. Biochem. 70:433-440.

Sneath, P. H. A., et al. 1975. Bergey’s Manual of Systematic Bacteriology, vol. 2. Baltimore, Md.:Williams and Wilkins.

Somers, E. B., and S. L. Taylor. 1987. Antibotulinal effectiveness of nisin in pasteurized processed cheese spreads. J. Food Prot. 50:842-848.

Spelaung, S. R. and S. K. Harlander. 1989. Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J. Food Prot. 52:856-862.

Staley, J. T., et al. 2005. Bergey’s Manual of Systematic Bacteriology, vol.2. ( Boone, D. R., and R. W. Castenholz, eds ) Springer-Verlag, New York. pp. 960-994.

Stein, T., S. Düsterhus, A. Stroh, and K-D. Entian. 2004. Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Appl Environ Microbiol. 70:2349-2353.

Stoffels, G.., H. -G.. Sahl and A. Gudmundsdottir. 1993. Carnocin UI49, a potential biopreservative produced by Carnobacterium piscicola:large sacle purification and activity against various Gram-positive bacteria including Listeria spp. Int. J. Food Microbiol. 20:199-210.

Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocin of gram-positive bacteria. Bacteriol. Rev. 40:722-756.

Tagg, J. R. 1991. Bacterial BLIS. ASM News. 57:611.

Teo A. Y-L., and H-M. Tan. 2005. Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl. Environ. Microbiol. 71:4185-4190.

Van Laack R. L. J. M., U. Schillinger, and W. H. Holzapfel. 1992. Characterization and partial purification of a bacteriocin produced by Leuconostoc carnosum LA44A. Int. J. Food Microbiol. 16:183-195.

Ullrich, C., B. Kluge, Z. Palacz, and J. Vater. 1991. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochem. 30:6503-6508.

Wiedemann, I., E. Breukink, C. van Kraaij, O. Kuipers, G.. Bierbaum, B. de Kruijff, and H. -G.. Sahl. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and the inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276:1772-1779.

Wooley, R. E., P. S. Gibbs, and E. B. Shotts, Jr. 1999. Inhibition of Salmonella typhimurium in the chicken intestinal tract by a transformed avirulent avian Escherichia coli. Avian Dis. 43:245-250.

Wu, S., S. Jia, D. Sun, M. Chen, X. Chen, J. Zhong, and L. Huan. 2005. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4. Curr. Microbiol. 51:292-296.

Zattola, E. A., T. L. Yezzi, D. B. Ajao, and R. F. Roberts. 1994. Utilization of cheddar cheese containing nisin as antimicrobial agent in other foods. Int. J. Food Microbiol. 24:227-238.

Zasloff, M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA. 84:5449-5453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top