跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅宥璋
研究生(外文):Yow-Chang Lo
論文名稱:腫瘤抑制蛋白p53在組蛋白去乙醯酶抑制劑誘導之EB病毒再活化過程中所扮演的角色
論文名稱(外文):Role of Tumor Suppressor p53 in HDAC Inhibitor-induced Epstein-Barr Virus Reactivation
指導教授:蔡錦華蔡錦華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:EB病毒
外文關鍵詞:EBV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前在許多與EB病毒相關的疾病組織中,可以觀察到p53多量累積的情形。同時,在這些病患的血清又可偵測到較高力價的抗EB病毒溶裂期產物抗體,因此在本論文中我們欲探討p53對於EB病毒溶裂期誘發的過程中所扮演的角色。本實驗發現利用siRNA抑制NA細胞株﹙感染EB病毒的鼻咽癌細胞株﹚內生性p53表現之後,利用西方墨點法分析發現TSA與SB這兩種HDAC抑制劑無法誘發EB病毒進入溶裂期,顯示p53很可能是EB病毒進入溶裂期的必備因子。進一步以RT-PCR以及Zta啟動子報導質體證明,p53可以調控EB病毒極早期基因Zta啟動子,因此我們也試圖探討p53調控Zta啟動子的機制。然而EMSA與DAPA實驗顯示p53可能不會與Zta啟動子結合亦可能不透過影響結合於Zta啟動子上的轉錄因子而調控Zta啟動子。由於p53活性最主要受轉譯後修飾影響,因此我們也試圖探討HDAC抑制劑是否會影響p53之轉譯後修飾,以及其對於EB病毒溶裂期的重要性。利用西方墨點法分析發現TSA會造成NA細胞內生性p53-Ser 46之磷酸化增加。同時我們亦證明PKC-δ參與在p53-Ser46磷酸化之調控。然而進一步將p53突變質體﹙S46A,S46D﹚短期轉染至H1299A細胞株,藉由西方墨點法證明p53-Ser46對於HDAC抑制劑所誘發之EB病毒溶裂期基因表現並不扮演重要角色。有趣的是,在H1299細胞株短期轉染另一個DNA結合能力突變的p53會造成HDAC抑制劑無法有效誘發病毒溶裂期,顯示p53的DNA結合能力對於HDAC抑制劑誘發EB病毒溶裂期可能扮演重要角色。
歸納我們的實驗證明p53對於HDAC抑制劑誘發EB病毒溶裂期很可能是一個關鍵因子,而p53很可能透過調控EB病毒極早期基因Zta啟動子的方式,進而影響病毒溶裂期發生。雖然目前我們對於p53調控Zta啟動子的詳細機制仍然不清楚,但是本論文試圖為p53於病毒與宿主交互關係中提供一個新的視野。
It was reported that p53 accumulates in some EBV-infected tissue cells, meanwhile, high titer antibodies against EBV lytic products were also observed in those patients’ sera, suggesting p53 may play a role in EBV reactivation. Here, we show that RNA interference of p53 in NA cells, an NPC cell line infected with Akata EBV, blocks HDAC inhibitor-induced EBV reactivation. Both transcripts and promoter activity of the EBV immediately early gene Zta are no longer induced by HDAC inhibitor in the absence of p53 expression. p53 may regulate EBV reactivation through Zta promoter. However, EMSA and DAPA experiments demonstrate that p53 does not bind to Zta promoter. EMSA experiments are also conducted to compare factors binding to ZIA/B、ZIC、ZII、ZIIIA and ZV in the absence or presence of p53. Knocking down of p53 results in augmentation of ZIA/B complex2. ZIA/B complex2 formation is through the middle region of ZIA/B probe. However, Zp-reporter assay demonstrates that mutation of the complex2-binding site does not alter HDAC inhibitor-induced Zta promoter activity.
Post-translational modification of p53 by HDAC inhibitor may play a role during EBV reactivation. Phosphorylation of p53-Ser46 increases during TSA time course treatment. However, phosphorylation of p53-Ser46 is not important for HDAC inhibitor-induced EBV reactivation. Intriguingly, HDAC inhibitor-induced EBV reactivation is abolished upon ectopically expression of a mutant p53 ( 248m ) in H1299A cel line, suggesting that p53 DNA binding ability is required for HDAC inhibitor-induced EBV reactivation.
We conclude that p53 acts as an important regulator of Zta promoter in the process of HDAC inhibitor-induced EBV reactivation, and it provides a novel role for p53 in virus-host interaction.
目錄


中文摘要----------------------------------------------------------------------Ⅰ

英文摘要----------------------------------------------------------------------Ⅱ

目錄-----------------------------------------------------------------------------Ⅲ

序論------------------------------------------------------------------------------1

動機目的------------------------------------------------------------------------9

實驗材料-----------------------------------------------------------------------10

實驗方法-----------------------------------------------------------------------17

實驗結果------------------------------------------------------------------------24

討論-----------------------------------------------------------------------------33

圖表----------------------------------------------------------------------------40

參考文獻-----------------------------------------------------------------------58
Amon, W., Binne, U. K., Bryant, H., Jenkins, P. J., Karstegl, C. E. & Farrell, P. J. (2004). Lytic cycle gene regulation of Epstein-Barr virus. J Virol 78, 13460-9.
Amon, W. & Farrell, P. J. (2005). Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15, 149-56.
Andersson-Anvret, M., Forsby, N., Klein, G., Henle, W. & Biorklund, A. (1979). Relationship between the Epstein-Barr virus genome and nasopharyngeal carcinoma in Caucasian patients. Int J Cancer 23, 762-7.
Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S. & Kelly, K. (1997). Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89, 1175-84.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C. & et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-11.
Bakkenist, C. J. & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499-506.
Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y. & Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674-7.
Bargonetti, J., Reynisdottir, I., Friedman, P. N. & Prives, C. (1992). Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6, 1886-98.
Bhende, P. M., Seaman, W. T., Delecluse, H. J. & Kenney, S. C. (2004). The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36, 1099-104.
Biggin, M., Bodescot, M., Perricaudet, M. & Farrell, P. (1987). Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61, 3120-32.
Binne, U. K., Amon, W. & Farrell, P. J. (2002). Promoter sequences required for reactivation of Epstein-Barr virus from latency. J Virol 76, 10282-9.
Bode, A. M. & Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793-805.
Borras, A. M., Strominger, J. L. & Speck, S. H. (1996). Characterization of the ZI domains in the Epstein-Barr virus BZLF1 gene promoter: role in phorbol ester induction. J Virol 70, 3894-901.
Brooks, C. L. & Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15, 164-71.
Brooks, C. L. & Gu, W. (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21, 307-15.
Brummelkamp, T. R., Bernards, R. & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-3.
Bryant, H. & Farrell, P. J. (2002). Signal Transduction and Transcription Factor Modification during Reactivation of Epstein-Barr Virus from Latency. J Virol 76, 10290-8.
Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B. & Siliciano, J. D. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677-9.
Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. & Nishizuka, Y. (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257, 7847-51.
Chang, L. K. & Liu, S. T. (2000). Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28, 3918-25.
Chen, W., Huang, S. & Cooper, N. R. (1998). Levels of p53 in Epstein-Barr virus-infected cells determine cell fate: apoptosis, cell cycle arrest at the G1/S boundary without apoptosis, cell cycle arrest at the G2/M boundary without apoptosis, or unrestricted proliferation. Virology 251, 217-26.
Chien, Y. C., Chen, J. Y., Liu, M. Y., Yang, H. I., Hsu, M. M., Chen, C. J. & Yang, C. S. (2001). Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-82.
Chrysomali, E., Greenspan, J. S., Dekker, N., Greenspan, D. & Regezi, J. A. (1996). Apoptosis-associated proteins in oral hairy leukoplakia. Oral Dis 2, 279-84.
Claudio, P. P., Cui, J., Ghafouri, M., Mariano, C., White, M. K., Safak, M., Sheffield, J. B., Giordano, A., Khalili, K., Amini, S. & Sawaya, B. E. (2006). Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol 208, 602-12.
Clayton, A. L., Hazzalin, C. A. & Mahadevan, L. C. (2006). Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23, 289-96.
Countryman, J. & Miller, G. (1985). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82, 4085-9.
Coutts, A. S. & La Thangue, N. B. (2005). The p53 response: emerging levels of co-factor complexity. Biochem Biophys Res Commun 331, 778-85.
D''Orazi, G., Cecchinelli, B., Bruno, T., Manni, I., Higashimoto, Y., Saito, S., Gostissa, M., Coen, S., Marchetti, A., Del Sal, G., Piaggio, G., Fanciulli, M., Appella, E. & Soddu, S. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4, 11-9.
Dumaz, N. & Meek, D. W. (1999). Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J 18, 7002-10.
el-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W. & Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nat Genet 1, 45-9.
Epstein, M. A., Achong, B. G. & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt''s Lymphoma. Lancet 1, 702-3.
Faggioni, A., Zompetta, C., Grimaldi, S., Barile, G., Frati, L. & Lazdins, J. (1986). Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232, 1554-6.
Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. & Delecluse, H. J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo J 19, 3080-9.
Fields, S. & Jang, S. K. (1990). Presence of a potent transcription activating sequence in the p53 protein. Science 249, 1046-9.
Flemington, E. & Speck, S. H. (1990a). Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1227-32.
Flemington, E. & Speck, S. H. (1990b). Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1217-26.
Fridman, J. S. & Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene 22, 9030-40.
Gartel, A. L., Ye, X., Goufman, E., Shianov, P., Hay, N., Najmabadi, F. & Tyner, A. L. (2001). Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc Natl Acad Sci U S A 98, 4510-5.
Giaccone, G., Battey, J., Gazdar, A. F., Oie, H., Draoui, M. & Moody, T. W. (1992). Neuromedin B is present in lung cancer cell lines. Cancer Res 52, 2732s-2736s.
Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. (2005). Acetylation and deacetylation of non-histone proteins. Gene 363, 15-23.
Greenspan, J. S., Greenspan, D., Lennette, E. T., Abrams, D. I., Conant, M. A., Petersen, V. & Freese, U. K. (1985). Replication of Epstein-Barr virus within the epithelial cells of oral "hairy" leukoplakia, an AIDS-associated lesion. N Engl J Med 313, 1564-71.
Grogan, E., Jenson, H., Countryman, J., Heston, L., Gradoville, L. & Miller, G. (1987). Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci U S A 84, 1332-6.
Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349-52.
Gu, W., Shi, X. L. & Roeder, R. G. (1997). Synergistic activation of transcription by CBP and p53. Nature 387, 819-23.
Gulley, M. L., Burton, M. P., Allred, D. C., Nicholls, J. M., Amin, M. B., Ro, J. Y. & Schneider, B. G. (1998). Epstein-Barr virus infection is associated with p53 accumulation in nasopharyngeal carcinoma. Hum Pathol 29, 252-9.
Hall, A. H. & Alexander, K. A. (2003). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J Virol 77, 6066-9.
Hardwick, J. M., Lieberman, P. M. & Hayward, S. D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-84.
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-9.
Ho, J. S., Ma, W., Mao, D. Y. & Benchimol, S. (2005). p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25, 7423-31.
Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., Sorlie, T., Hovig, E., Smith-Sorensen, B., Montesano, R. & Harris, C. C. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 22, 3551-5.
Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. (1991). p53 mutations in human cancers. Science 253, 49-53.
Hwang, J. K. & Lin, C. T. (1997). Co-localization of endogenous and exogenous p53 proteins in nasopharyngeal carcinoma cells. J Histochem Cytochem 45, 991-1003.
Jiang, D., Srinivasan, A., Lozano, G. & Robbins, P. D. (1993). SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8, 2805-12.
Jung, E. J., Lee, Y. M., Lee, B. L., Chang, M. S. & Kim, W. H. (2007). Lytic induction and apoptosis of Epstein-Barr virus-associated gastric cancer cell line with epigenetic modifiers and ganciclovir. Cancer Lett 247, 77-83.
Kadonaga, J. T. (1998). Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307-13.
Keller, D. M. & Lu, H. (2002). p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J Biol Chem 277, 50206-13.
Keller, D. M., Zeng, X., Wang, Y., Zhang, Q. H., Kapoor, M., Shu, H., Goodman, R., Lozano, G., Zhao, Y. & Lu, H. (2001). A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7, 283-92.
Kikuta, H., Taguchi, Y., Tomizawa, K., Kojima, K., Kawamura, N., Ishizaka, A., Sakiyama, Y., Matsumoto, S., Imai, S., Kinoshita, T. & et al. (1988). Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333, 455-7.
Kirchmaier, A. L. & Sugden, B. (1995). Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol 69, 1280-3.
Kraus, R. J., Perrigoue, J. G. & Mertz, J. E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. J Virol 77, 199-207.
Lagger, G., Doetzlhofer, A., Schuettengruber, B., Haidweger, E., Simboeck, E., Tischler, J., Chiocca, S., Suske, G., Rotheneder, H., Wintersberger, E. & Seiser, C. (2003). The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 23, 2669-79.
Lakin, N. D. & Jackson, S. P. (1999). Regulation of p53 in response to DNA damage. Oncogene 18, 7644-55.
Lavin, M. F. & Gueven, N. (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13, 941-50.
Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323-31.
Liang, C. L., Chen, J. L., Hsu, Y. P., Ou, J. T. & Chang, Y. S. (2002). Epstein-Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem 277, 23345-57.
Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M. & Wang, C. C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-27.
Liu, S., Borras, A. M., Liu, P., Suske, G. & Speck, S. H. (1997a). Binding of the ubiquitous cellular transcription factors Sp1 and Sp3 to the ZI domains in the Epstein-Barr virus lytic switch BZLF1 gene promoter. Virology 228, 11-8.
Liu, S., Liu, P., Borras, A., Chatila, T. & Speck, S. H. (1997b). Cyclosporin A-sensitive induction of the Epstein-Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. Embo J 16, 143-53.
Ljungman, M. (2000). Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2, 208-25.
Luka, J., Kallin, B. & Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-31.
Mayo, L. D., Seo, Y. R., Jackson, M. W., Smith, M. L., Rivera Guzman, J., Korgaonkar, C. K. & Donner, D. B. (2005). Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 280, 25953-9.
Metzenberg, S. (1990). Levels of Epstein-Barr virus DNA in lymphoblastoid cell lines are correlated with frequencies of spontaneous lytic growth but not with levels of expression of EBNA-1, EBNA-2, or latent membrane protein. J Virol 64, 437-44.
Middleton, T. & Sugden, B. (1994). Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol 68, 4067-71.
Monneret, C. (2005). Histone deacetylase inhibitors. Eur J Med Chem 40, 1-13.
Mueller, N., Evans, A., Harris, N. L., Comstock, G. W., Jellum, E., Magnus, K., Orentreich, N., Polk, B. F. & Vogelman, J. (1989). Hodgkin''s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med 320, 689-95.
Murono, S., Yoshizaki, T., Park, C. S. & Furukawa, M. (1999). Association of Epstein-Barr virus infection with p53 protein accumulation but not bcl-2 protein in nasopharyngeal carcinoma. Histopathology 34, 432-8.
Niedobitek, G., Agathanggelou, A., Barber, P., Smallman, L. A., Jones, E. L. & Young, L. S. (1993). P53 overexpression and Epstein-Barr virus infection in undifferentiated and squamous cell nasopharyngeal carcinomas. J Pathol 170, 457-61.
Niemhom, S., Kitazawa, S., Murao, S., Kunachak, S. & Maeda, S. (2000). Co-expression of p53 and bcl-2 may correlate to the presence of epstein-barr virus genome and the expression of proliferating cell nuclear antigen in nasopharyngeal carcinoma. Cancer Lett 160, 199-208.
Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y. & Taya, Y. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-62.
Pazin, M. J. & Kadonaga, J. T. (1997). What''s up and down with histone deacetylation and transcription? Cell 89, 325-8.
Pierceall, W. E., Mukhopadhyay, T., Goldberg, L. H. & Ananthaswamy, H. N. (1991). Mutations in the p53 tumor suppressor gene in human cutaneous squamous cell carcinomas. Mol Carcinog 4, 445-9.
Preciado, M. V., Chabay, P. A., De Matteo, E. N., Gismondi, M. I., Rey, G. & Zubizarreta, P. (2002). Epstein Barr virus associated pediatric nasopharyngeal carcinoma: its correlation with p53 and bcl-2 expression. Med Pediatr Oncol 38, 345-8.
Ragoczy, T., Heston, L. & Miller, G. (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978-84.
Reczek, E. E., Flores, E. R., Tsay, A. S., Attardi, L. D. & Jacks, T. (2003). Multiple response elements and differential p53 binding control Perp expression during apoptosis. Mol Cancer Res 1, 1048-57.
Resnick, L., Herbst, J. S., Ablashi, D. V., Atherton, S., Frank, B., Rosen, L. & Horwitz, S. N. (1988). Regression of oral hairy leukoplakia after orally administered acyclovir therapy. Jama 259, 384-8.
Roy, S., Packman, K., Jeffrey, R. & Tenniswood, M. (2005). Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ 12, 482-91.
Roy, S. & Tenniswood, M. (2007). Site-specific acetylation of p53 directs selective transcription complex assembly. J Biol Chem 282, 4765-71.
Ruf, I. K. & Rawlins, D. R. (1995). Identification and characterization of ZIIBC, a complex formed by cellular factors and the ZII site of the Epstein-Barr virus BZLF1 promoter. J Virol 69, 7648-57.
Sakaguchi, K., Sakamoto, H., Lewis, M. S., Anderson, C. W., Erickson, J. W., Appella, E. & Xie, D. (1997). Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36, 10117-24.
Scolnick, D. M., Chehab, N. H., Stavridi, E. S., Lien, M. C., Caruso, L., Moran, E., Berger, S. L. & Halazonetis, T. D. (1997). CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res 57, 3693-6.
Seoane, J., Le, H. V. & Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-34.
Shao, J. Y., Li, Y. H., Gao, H. Y., Wu, Q. L., Cui, N. J., Zhang, L., Cheng, G., Hu, L. F., Ernberg, I. & Zeng, Y. X. (2004). Comparison of plasma Epstein-Barr virus (EBV) DNA levels and serum EBV immunoglobulin A/virus capsid antigen antibody titers in patients with nasopharyngeal carcinoma. Cancer 100, 1162-70.
Shaw, J. E., Levinger, L. F. & Carter, C. W., Jr. (1979). Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. J Virol 29, 657-65.
Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-34.
Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E. & Kastan, M. B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11, 3471-81.
Sixbey, J. W., Vesterinen, E. H., Nedrud, J. G., Raab-Traub, N., Walton, L. A. & Pagano, J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-3.
Speck, S. H., Chatila, T. & Flemington, E. (1997). Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5, 399-405.
Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., Benchimol, S. & Mak, T. W. (2001). Regulation of PTEN transcription by p53. Mol Cell 8, 317-25.
Szekely, L., Pokrovskaja, K., Jiang, W. Q., Selivanova, G., Lowbeer, M., Ringertz, N., Wiman, K. G. & Klein, G. (1995). Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression patterns. Oncogene 10, 1869-74.
Takada, K. (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32.
Thomas, M., Massimi, P., Jenkins, J. & Banks, L. (1995). HPV-18 E6 mediated inhibition of p53 DNA binding activity is independent of E6 induced degradation. Oncogene 10, 261-8.
Thornborrow, E. C., Patel, S., Mastropietro, A. E., Schwartzfarb, E. M. & Manfredi, J. J. (2002). A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21, 990-9.
Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., Taya, Y., Prives, C. & Abraham, R. T. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13, 152-7.
Tishler, R. B., Calderwood, S. K., Coleman, C. N. & Price, B. D. (1993). Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res 53, 2212-6.
Toledo, F. & Wahl, G. M. (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6, 909-23.
Tovey, M. G., Lenoir, G. & Begon-Lours, J. (1978). Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276, 270-2.
Tsai, C. H., Williams, M. V. & Glaser, R. (1991). Characterization of two monoclonal antibodies to Epstein-Barr virus diffuse early antigen which react to two different epitopes and have different biological function. J Virol Methods 33, 47-52.
Vousden, K. H. & Lu, X. (2002). Live or let die: the cell''s response to p53. Nat Rev Cancer 2, 594-604.
Wang, Y. C., Huang, J. M. & Montalvo, E. A. (1997). Characterization of proteins binding to the ZII element in the Epstein-Barr virus BZLF1 promoter: transactivation by ATF1. Virology 227, 323-30.
Watanabe, S., Kanda, T. & Yoshiike, K. (1989). Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7. J Virol 63, 965-9.
Wegel, E. & Shaw, P. (2005). Gene activation and deactivation related changes in the three-dimensional structure of chromatin. Chromosoma 114, 331-7.
Weiss, L. M., Movahed, L. A., Warnke, R. A. & Sklar, J. (1989). Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin''s disease. N Engl J Med 320, 502-6.
Werness, B. A., Levine, A. J. & Howley, P. M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76-9.
Ye, J., Gradoville, L., Daigle, D. & Miller, G. (2007). De Novo Protein Synthesis Is Required for Lytic Cycle Reactivation of Epstein-Barr Virus, but not Kaposi''s Sarcoma-Associated Herpesvirus, in Response to Histone Deacetylase Inhibitors and Protein Kinase C Agonists. J Virol.
Yoshida, K., Liu, H. & Miki, Y. (2006). Protein kinase C delta regulates Ser46 phosphorylation of p53 tumor suppressor in the apoptotic response to DNA damage. J Biol Chem 281, 5734-40.
Yu, J. & Zhang, L. (2005). The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331, 851-8.
Zauberman, A., Flusberg, D., Haupt, Y., Barak, Y. & Oren, M. (1995). A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res 23, 2584-92.
Zeng, Y., Zhang, L. G., Wu, Y. C., Huang, Y. S., Huang, N. Q., Li, J. Y., Wang, Y. B., Jiang, M. K., Fang, Z. & Meng, N. N. (1985). Prospective studies on nasopharyngeal carcinoma in Epstein-Barr virus IgA/VCA antibody-positive persons in Wuzhou City, China. Int J Cancer 36, 545-7.
Zhao, Y., Lu, S., Wu, L., Chai, G., Wang, H., Chen, Y., Sun, J., Yu, Y., Zhou, W., Zheng, Q., Wu, M., Otterson, G. A. & Zhu, W. G. (2006). Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol Cell Biol 26, 2782-90.
zur Hausen, H., O''Neill, F. J., Freese, U. K. & Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top