跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/19 00:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖嘉瑄
研究生(外文):Chia-Hsuan Liao
論文名稱:轉基因斑馬魚肌肉專一性表現Progranulin基因導致肌肉細胞肥大之分子機制研究
論文名稱(外文):Molecular Mechanisms Study of Myocyte Hypertrophy in Transgenic Zebrafish with Muscle-specific Overexpression Progranulin Gene
指導教授:吳金洌吳金洌引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:53
中文關鍵詞:肌肉生成調控因子肌肉肥大轉基因魚
外文關鍵詞:progranulinMRFshypertrophytransgenic linezebrafish
相關次數:
  • 被引用被引用:1
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Progranulin(Pgrn) 被歸類為上皮組織生長因子的家族,具有調節系統發育、傷害復原等功能並且已知與數種癌症的發生有關。先前研究顯示,腹腔注射生長激素(GH)會誘導肝臟的Pgrn伴隨著IGF-1一起表現。已經證實GH-IGF-1系統在個體生長上具有關鍵的調節功能。而肌肉為魚體高比例組織。因此,我們藉由肌肉專一性的表現Pgrn來探討此生長因子在斑馬魚肌肉生長所扮演的角色。首先,從斑馬魚肝臟中複製pgrn cDNA。此cDNA 包含962氨基酸其中包含11個granulin次單元。從不同時間點分析基因表現量之結果顯示,pgrn表現於魚卵中具有母體效應而胚胎從6 somite 階段開始表現。位置上,在發育的過程pgrn基因的表現分布廣泛。 組織分布上,pgrn基因主要分布在肝,腸,腎和脾臟。 使用tol2 transposon系統, 我們建立肌肉專一性大量表現pgrn轉基因魚。相較於原生株,轉基因魚之體重和體長均顯著的增加。轉基因公母魚的促進體重比率分別為48.14%和 48.00%。在轉基因公母魚增長的體長比率各別為25.14% 和75.93%。接著以切片,HE染色的方式來分析肌肉細胞在型態上的變化。取二個月之斑馬魚肌肉組織分析各個肌肉細胞之平均面積,結果顯示相較於野生株(255.70
Progranulin (Pgrn) was considered as a family of epithelial tissue growth factor because of the potential functions displayed in the regulation of development, wound healing and progression of several cancer types. In our previous study, we found hepatic pgrn and IGF-1 was co-induced with growth hormone (GH) administration. As well known that GH-IGF1 axis plays a critical role in regulating of somatic growth and the majority of fish body is muscle tissue. Therefore, we attempt to prove the function of pgrn in zebrafish by muscle-specific over-expression approach. First, the pgrn cDNA was cloned from zebrafish liver cDNA. The cDNA contains an open reading frame encoding a peptide 962 amino acid residues (aa) that contains eleven granulin motifs. The temporal expression shown that pgrn gene possesses a maternal expression and initiated expression from 6-somites stages. The tissue distribution of pgrn gene was major contributed in liver, intestine, kidney and spleen. Using tol2 transposon system, a zebrafish transgenic line with muscle-specific over-expression of pgrn was established. The body weight and body length were increased significantly in transgenic line compared with that in wild type. The promoted ratio of body weight in transgenic male and female were 48.14% and 48.00%, respectively. The promoted ratio of body length in transgenic male and female were 25.14% and 75.93%, respectively. The morphology of muscle cells in sections were clarified by HE stain. The average size of muscle cells in a select area were increased significantly in transgenic line (345.14
TABLE OF CONTENTS
ABSTRACT IN CHINESE Ι
ABSTRACT Π
Introduction 1
Materials and Methods 9
Results 15
Cloning of zebrafish progranulin (pgrn) gene 15
The temporal and tissue expression profile of pgrn gene 15
Transient muscle-specific expressed pgrn gene in zebrafish 16
Establishment of zebrafish transgenic line with muscle-specific ovex-pression of pgrn gene 17
The phenotypes with muscle-specific expression of pgrn
1. Somatic growth enhancement 18
2. Muscle hypertrophy 19
The molecular level analysis of gene markers 20
Discussion 21
References 29
Figures 34
References
Adams, G. R., Haddad, F., and Baldwin, K. M. (1999). Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87, 1705-1712.
Ahmed, Z., Mackenzie, I. R., Hutton, M. L., and Dickson, D. W. (2007). Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4, 7.
Baar, K., and Esser, K. (1999). Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276, C120-127.
Bhandari, N., Bhan, M. K., and Sazawal, S. (1992). Mortality associated with acute watery diarrhea, dysentery and persistent diarrhea in rural North India. Acta Paediatr 81 Suppl 381, 3-6.
Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., and Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3, 1014-1019.
Cadieux, B., Chitramuthu, B. P., Baranowski, D., and Bennett, H. P. (2005). The zebrafish progranulin gene family and antisense transcripts. BMC Genomics 6, 156.
Carson, J. A., and Booth, F. W. (1998). Myogenin mRNA is elevated during rapid, slow, and maintenance phases of stretch-induced hypertrophy in chicken slow-tonic muscle. Pflugers Arch 435, 850-858.
Chen, M. H., Li, Y. H., Chang, Y., Hu, S. Y., Gong, H. Y., Lin, G. H., Chen, T. T., and Wu, J. L. (2007). Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus. Gen Comp Endocrinol 150, 212-218.
Darr, K. C., and Schultz, E. (1987). Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63, 1816-1821.
Devoto, S. H., Melancon, E., Eisen, J. S., and Westerfield, M. (1996). Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371-3380.
He, Z., and Bateman, A. (2003). Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81, 600-612.
Ishido, M., Kami, K., and Masuhara, M. (2004a). In vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle. Am J Physiol Cell Physiol 287, C484-493.
Ishido, M., Kami, K., and Masuhara, M. (2004b). Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles. Acta Physiol Scand 180, 281-289.
Jacobs-El, J., Zhou, M. Y., and Russell, B. (1995). MRF4, Myf-5, and myogenin mRNAs in the adaptive responses of mature rat muscle. Am J Physiol 268, C1045-1052.
Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244-254.
Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-11408.
Lowe, D. A., and Alway, S. E. (1999). Stretch-induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow-tonic muscle are not dependent upon satellite cell proliferation. Cell Tissue Res 296, 531-539.
Murgia, M., Serrano, A. L., Calabria, E., Pallafacchina, G., Lomo, T., and Schiaffino, S. (2000). Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2, 142-147.
Nader, G. A., McLoughlin, T. J., and Esser, K. A. (2005). mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 289, C1457-1465.
Olson, E. N., and Klein, W. H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8, 1-8.
Plowman, G. D., Green, J. M., Neubauer, M. G., Buckley, S. D., McDonald, V. L., Todaro, G. J., and Shoyab, M. (1992). The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem 267, 13073-13078.
Psilander, N., Damsgaard, R., and Pilegaard, H. (2003). Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 95, 1038-1044.
Schiaffino, S., Bormioli, S. P., and Aloisi, M. (1976). The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol 21, 113-118.
Shoyab, M., McDonald, V. L., Byles, C., Todaro, G. J., and Plowman, G. D. (1990). Epithelins 1 and 2: isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci U S A 87, 7912-7916.
Xu, S. Q., Tang, D., Chamberlain, S., Pronk, G., Masiarz, F. R., Kaur, S., Prisco, M., Zanocco-Marani, T., and Baserga, R. (1998). The granulin/epithelin precursor abrogates the requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem 273, 20078-20083.
Xu, Y., He, J., Tian, H. L., Chan, C. H., Liao, J., Yan, T., Lam, T. J., and Gong, Z. (1999). Fast skeletal muscle-specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle. DNA Cell Biol 18, 85-95.
Zanocco-Marani, T., Bateman, A., Romano, G., Valentinis, B., He, Z. H., and Baserga, R. (1999). Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res 59, 5331-5340.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊