|
References Adams, G. R., Haddad, F., and Baldwin, K. M. (1999). Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87, 1705-1712. Ahmed, Z., Mackenzie, I. R., Hutton, M. L., and Dickson, D. W. (2007). Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4, 7. Baar, K., and Esser, K. (1999). Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276, C120-127. Bhandari, N., Bhan, M. K., and Sazawal, S. (1992). Mortality associated with acute watery diarrhea, dysentery and persistent diarrhea in rural North India. Acta Paediatr 81 Suppl 381, 3-6. Bodine, S. C., Stitt, T. N., Gonzalez, M., Kline, W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J., and Yancopoulos, G. D. (2001). Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3, 1014-1019. Cadieux, B., Chitramuthu, B. P., Baranowski, D., and Bennett, H. P. (2005). The zebrafish progranulin gene family and antisense transcripts. BMC Genomics 6, 156. Carson, J. A., and Booth, F. W. (1998). Myogenin mRNA is elevated during rapid, slow, and maintenance phases of stretch-induced hypertrophy in chicken slow-tonic muscle. Pflugers Arch 435, 850-858. Chen, M. H., Li, Y. H., Chang, Y., Hu, S. Y., Gong, H. Y., Lin, G. H., Chen, T. T., and Wu, J. L. (2007). Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus. Gen Comp Endocrinol 150, 212-218. Darr, K. C., and Schultz, E. (1987). Exercise-induced satellite cell activation in growing and mature skeletal muscle. J Appl Physiol 63, 1816-1821. Devoto, S. H., Melancon, E., Eisen, J. S., and Westerfield, M. (1996). Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371-3380. He, Z., and Bateman, A. (2003). Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81, 600-612. Ishido, M., Kami, K., and Masuhara, M. (2004a). In vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle. Am J Physiol Cell Physiol 287, C484-493. Ishido, M., Kami, K., and Masuhara, M. (2004b). Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying rat skeletal muscles. Acta Physiol Scand 180, 281-289. Jacobs-El, J., Zhou, M. Y., and Russell, B. (1995). MRF4, Myf-5, and myogenin mRNAs in the adaptive responses of mature rat muscle. Am J Physiol 268, C1045-1052. Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244-254. Kawakami, K., Shima, A., and Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403-11408. Lowe, D. A., and Alway, S. E. (1999). Stretch-induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow-tonic muscle are not dependent upon satellite cell proliferation. Cell Tissue Res 296, 531-539. Murgia, M., Serrano, A. L., Calabria, E., Pallafacchina, G., Lomo, T., and Schiaffino, S. (2000). Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2, 142-147. Nader, G. A., McLoughlin, T. J., and Esser, K. A. (2005). mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 289, C1457-1465. Olson, E. N., and Klein, W. H. (1994). bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8, 1-8. Plowman, G. D., Green, J. M., Neubauer, M. G., Buckley, S. D., McDonald, V. L., Todaro, G. J., and Shoyab, M. (1992). The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem 267, 13073-13078. Psilander, N., Damsgaard, R., and Pilegaard, H. (2003). Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle. J Appl Physiol 95, 1038-1044. Schiaffino, S., Bormioli, S. P., and Aloisi, M. (1976). The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch B Cell Pathol 21, 113-118. Shoyab, M., McDonald, V. L., Byles, C., Todaro, G. J., and Plowman, G. D. (1990). Epithelins 1 and 2: isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci U S A 87, 7912-7916. Xu, S. Q., Tang, D., Chamberlain, S., Pronk, G., Masiarz, F. R., Kaur, S., Prisco, M., Zanocco-Marani, T., and Baserga, R. (1998). The granulin/epithelin precursor abrogates the requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem 273, 20078-20083. Xu, Y., He, J., Tian, H. L., Chan, C. H., Liao, J., Yan, T., Lam, T. J., and Gong, Z. (1999). Fast skeletal muscle-specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle. DNA Cell Biol 18, 85-95. Zanocco-Marani, T., Bateman, A., Romano, G., Valentinis, B., He, Z. H., and Baserga, R. (1999). Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res 59, 5331-5340.
|