跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:董伯元
研究生(外文):Po-Yuan Tung
論文名稱:細胞外酸性pH對HepG2細胞黏附接合之影響
論文名稱(外文):Effects of acidic extracellular pH on Adherens Junctions of HepG2 cells
指導教授:王淑美王淑美引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:解剖學暨生物細胞學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:67
中文關鍵詞:黏附接合
外文關鍵詞:adherens junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞外酸性pH(pHe)是腫瘤細胞生長環境的特徵之一,並且它會影響腫瘤的侵犯能力。過去多著重於研究分解細胞外基質(extracellular matrix)的能力,鮮少探討adherens junction(AJ)參與的角色。我們假設pHe可能藉由破壞AJ而增加細胞移行能力。結果顯示,細胞培養在酸性的培養液(pH 6.6)中,會引發細胞形態的改變,從原本緊密接合的群聚狀態,變為比較扁平的分散細胞,且伴隨著增強的細胞移行能力。pH 6.6處理之後,活化的c-Src磷酸酶短時間內即有顯著的增加。和pH 7.4的組別相比,pH 6.6處理組的細胞於AJ處的E-cadherin和β-catenin染色減少,且細胞質內含有E-cadherin的vesicle增加。同時,細胞膜上E-cadherin和β-catenin的蛋白質的量也顯著減少。使用Src的抑制劑PP2處理,可以阻止因為pHe所造成上述兩種蛋白質在細胞膜上減少的狀況,同時也會抑制因酸性pHe而增加的細胞移行能力。pH 6.6可以造成β-catenin 酪氨酸(tyrosine)磷酸化的程度顯著上升,並且伴隨著連接在β-catenin上的E-cadherin相對減少。這些效應可能是因為活化的c-Src可以藉由磷酸化β-catenin的Y654,促使cadherin/catenin complex瓦解的緣故。除此之外,利用免疫沉澱法,可觀察到pH 6.6處理後E-cadherin酪氨酸磷酸化的程度增加,而且與E-cadherin結合的Hakai和ubiquitinized E-cadherin的蛋白質量也分別增加。故推測c-Src也可以使E-cadherin酪氨酸磷酸化,使得Hakai (cbl-like ubiquitin ligase)連接到E-cadherin上,進一步促進ubiquitinated E-cadherin的形成,而增加E-cadherin endocytosis。酸性pHe所引發之E-cadherin在細胞膜上分布的減少,也受到其他機制的調控。在pH 7.4對照組的細胞,actin bundles會嵌入AJ處。pH 6.6處理使AJ處E-cadherin 減少及cortical actin bundles去聚合,伴隨著活化的PKC
An acidic extracellular pH (pHe) is a feature of the tumor microenvironment and increases tumor invasion. However, little attention has been paid to the role of adherens junctions (AJs) in acidic pHe-induced cell invasion. We hypothesized that an acidic pHe may increase cell migration by disruption of the AJ via modulation of cell-cell adhesion molecules. Our results showed that incubation of HepG2 cells in acidic medium (pH 6.6) induced a phenotypic change from tight cell clusters to dispersed cells with a flattened morphology and this change was accompanied by an increase of cell migration. Rapid phosphorylation of c-Src kinase was detected after incubation of the cells at pH 6.6. In comparison to cells incubated at pH 7.4, the decrease of E-cadherin and β-catenin staining at AJ and an increase in E-cadherin-containing cytoplasmic vesicles were observed in pH 6.6-treated cells. The lower protein levels in the membrane fractions of E-cadherin and β-catenin were also noticed. Pretreatment with a Src kinase inhibitor, PP2, prevented the acidic pHe-induced decrease in protein levels and immunoreactivity of membrane-bound E-cadherin and β-catenin. The acidic pHe-induced c-Src activation increased tyrosine phosphorylation of E-cadherin and β-catenin, and resulted in the decreased amount of E-cadherin associated with β-catenin. These effects may be caused by disruption of cadherin/ catenin complex through tyrosine phosphorylation β-catenin at Y654 in response to c-Src kinase activation. Furthermore, the protein amounts of Hakai (cbl-like ubiquitin ligase) bound to E-cadherin and the levels of ubiquitinated E-cadherin were both increased by pH 6.6 treatments by immunoprecipitation and immunoblotting analysis. The results inferred that the activation of c-Src kinase led to the binding of Hakai to tyrosine phosphorylated E-cadherin at AJ, which promoted increased ubiquitination of E-cadherin and accelerated E-cadherin endocytosis. In addition, other mechanisms may contribute to the acidic pHe-induced downregulation of membranous E-cadherin. In pH 7.4-treated cells, cortical actin bundles inserted at AJ. pH 6.6 treatment caused the disappearance of E-cadherin staining coincided with the dissolution of junctional actin bundle, and induced a rapid activation of PKCε. Our results showed that the inhibition of PKCε by eV1-2 prevented the depolymerization of junctional actin bundles and downregulation of junctional E-cadherin induced by acidic pHe. These data confirmed the hypothesis that normal distribution of E-cadherin at AJ is intimately associated with cortical actin bundles. Either inhibition of PKCε by eV1-2 or of c-Src by PP2 prevented acidic pHe induecd cell migration. Acidic pHe enhanced the association of active PKC
誌謝 …………………………………………………. P.2
中文摘要 ……………………………………… P.3∼P.4
英文摘要 ……………………………………… P.5∼P.6
前言 ………………………………………….. P.7∼P.14
材料與方法 ………………………………… P.15∼P.22
結果 ………………………………………… P.23∼P.30
討論 ………………………………………… P.31∼P.38
參考文獻 …………………………………… P.39∼P.49
圖片與圖片說明 …………………………… P.50∼P.66
模式圖 ………………………...…………………… P.67
Aberle H, Schwartz H, Hoschuetzky H, Kemler R (1996): Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 271:1520-6.
Akhtar N, Hotchin NA (2001): RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell 12:847-62.
Anastasiadis PZ, Reynolds AB (2000): The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci 113 ( Pt 8):1319-34.
Angst BD, Marcozzi C, Magee AI (2001): The cadherin superfamily. J Cell Sci 114:625-6.
Avizienyte E, Frame MC (2005): Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 17:542-7.
Ban KC, Singh H, Krishnan R, Seow HF (2003): GSK-3beta phosphorylation and alteration of beta-catenin in hepatocellular carcinoma. Cancer Lett 199:201-8.
Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W (1993): Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 120:757-66.
Birchmeier C, Bladt F, Yamaai T (1997): The functions of HGF/SF and its receptor, the c-Met tyrosine kinase, in mammalian development. Ciba Found Symp 212:169-77; discussion 177-82.
Boucher MJ, Laprise P, Rivard N (2005): Cyclic AMP-dependent protein kinase A negatively modulates adherens junction integrity and differentiation of intestinal epithelial cells. J Cell Physiol 202:178-90.
Boyer B, Valles AM, Edme N (2000): Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol 60:1091-9.
Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001): Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98:10356-61.
Brembeck FH, Schwarz-Romond T, Bakkers J, Wilhelm S, Hammerschmidt M, Birchmeier W (2004): Essential role of BCL9-2 in the switch between beta-catenin''s adhesive and transcriptional functions. Genes Dev 18:2225-30.
Bryant DM, Stow JL (2004): The ins and outs of E-cadherin trafficking. Trends Cell Biol 14:427-34.
Carruba G, Cervello M, Miceli MD, Farruggio R, Notarbartolo M, Virruso L, Giannitrapani L, Gambino R, Montalto G, Castagnetta L (1999): Truncated form of beta-catenin and reduced expression of wild-type catenins feature HepG2 human liver cancer cells. Ann N Y Acad Sci 886:212-6.
Cervello M, Notarbartolo M, Landino M, Cusimano A, Virruso L, Montalto G, D''Alessandro N (2001): Downregulation of wild-type beta-catenin expression by interleukin 6 in human hepatocarcinoma HepG2 cells: a possible role in the growth-regulatory effects of the cytokine? Eur J Cancer 37:512-9.
Coluccia AM, Benati D, Dekhil H, De Filippo A, Lan C, Gambacorti-Passerini C (2006): SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res 66:2279-86.
Cosson P, de Curtis I, Pouyssegur J, Griffiths G, Davoust J (1989): Low cytoplasmic pH inhibits endocytosis and transport from the trans-Golgi network to the cell surface. J Cell Biol 108:377-87.
de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C (1998): Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95:8847-51.
Failor KL, Desyatnikov Y, Finger LA, Firestone GL (2007): Glucocorticoid-induced degradation of GSK3 protein is triggered by Sgk and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol.
Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z (2007): Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282:11221-9.
Fischer B, Muller B, Fisch P, Kreutz W (2000): An acidic microenvironment inhibits antitumoral non-major histocompatibility complex-restricted cytotoxicity: implications for cancer immunotherapy. J Immunother 23:196-207.
Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W (2002): Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4:222-31.
Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001): Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020-4.
Fukuyama T, Ogita H, Kawakatsu T, Inagaki M, Takai Y (2006): Activation of Rac by cadherin through the c-Src-Rap1-phosphatidylinositol 3-kinase-Vav2 pathway. Oncogene 25:8-19.
Glunde K, Guggino SE, Solaiyappan M, Pathak AP, Ichikawa Y, Bhujwalla ZM (2003): Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia 5:533-45.
Gottardi CJ, Gumbiner BM (2004): Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167:339-49.
Griffiths JR, McIntyre DJ, Howe FA, Stubbs M (2001): Why are cancers acidic? A carrier-mediated diffusion model for H+ transport in the interstitial fluid. Novartis Found Symp 240:46-62; discussion 62-7, 152-3.
Gumbiner BM (2005): Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622-34.
Hamaguchi M, Matsuyoshi N, Ohnishi Y, Gotoh B, Takeichi M, Nagai Y (1993): p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. Embo J 12:307-14.
Harris TJ, Peifer M (2005): Decisions, decisions: beta-catenin chooses between adhesion and transcription. Trends Cell Biol 15:234-7.
Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A (1992): MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356:618-22.
Hay ED (2005): The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706-20.
Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002): Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284-91.
Hu P, O''Keefe EJ, Rubenstein DS (2001): Tyrosine phosphorylation of human keratinocyte beta-catenin and plakoglobin reversibly regulates their binding to E-cadherin and alpha-catenin. J Invest Dermatol 117:1059-67.
Huber AH, Nelson WJ, Weis WI (1997): Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90:871-82.
Kato Y, Nakayama Y, Umeda M, Miyazaki K (1992): Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267:11424-30.
Le TL, Joseph SR, Yap AS, Stow JL (2002): Protein kinase C regulates endocytosis and recycling of E-cadherin. Am J Physiol Cell Physiol 283:C489-99.
Le TL, Yap AS, Stow JL (1999): Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 146:219-32.
Lilien J, Balsamo J, Arregui C, Xu G (2002): Turn-off, drop-out: functional state switching of cadherins. Dev Dyn 224:18-29.
Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007): IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 120:2600-8.
Lu Z, Ghosh S, Wang Z, Hunter T (2003): Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4:499-515.
Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003): Proton-sensing G-protein-coupled receptors. Nature 425:93-8.
Martinez D, Vermeulen M, Trevani A, Ceballos A, Sabatte J, Gamberale R, Alvarez ME, Salamone G, Tanos T, Coso OA, Geffner J (2006): Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. J Immunol 176:1163-71.
Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G, Wedlich D (2001): Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 61:3508-17.
Montcourrier P, Silver I, Farnoud R, Bird I, Rochefort H (1997): Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis 15:382-92.
Murai M, Shen X, Huang L, Carpenter WM, Lin CS, Silverman S, Regezi J, Kramer RH (2004): Overexpression of c-met in oral SCC promotes hepatocyte growth factor-induced disruption of cadherin junctions and invasion. Int J Oncol 25:831-40.
Nathke IS, Hinck L, Swedlow JR, Papkoff J, Nelson WJ (1994): Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J Cell Biol 125:1341-52.
Newell K, Franchi A, Pouyssegur J, Tannock I (1993): Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity. Proc Natl Acad Sci U S A 90:1127-31.
Owen JD, Ruest PJ, Fry DW, Hanks SK (1999): Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol 19:4806-18.
Ozawa M, Kemler R (1998): Altered cell adhesion activity by pervanadate due to the dissociation of alpha-catenin from the E-cadherin.catenin complex. J Biol Chem 273:6166-70.
Palacios F, Tushir JS, Fujita Y, D''Souza-Schorey C (2005): Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25:389-402.
Palovuori R, Sormunen R, Eskelinen S (2003): SRC-induced disintegration of adherens junctions of madin-darby canine kidney cells is dependent on endocytosis of cadherin and antagonized by Tiam-1. Lab Invest 83:1901-15.
Paterson AD, Parton RG, Ferguson C, Stow JL, Yap AS (2003): Characterization of E-cadherin endocytosis in isolated MCF-7 and chinese hamster ovary cells: the initial fate of unbound E-cadherin. J Biol Chem 278:21050-7.
Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, Garcia de Herreros A, Dunach M (2003): p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. Mol Cell Biol 23:2287-97.
Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MF (2002): Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 4:798-805.
Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006): Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699-707.
Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M (1999): Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274:36734-40.
Rubenstein NM, Guan Y, Woo PL, Firestone GL (2003): Glucocorticoid down-regulation of RhoA is required for the steroid-induced organization of the junctional complex and tight junction formation in rat mammary epithelial tumor cells. J Biol Chem 278:10353-60.
Schornack PA, Gillies RJ (2003): Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia 5:135-45.
Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N (2006): Low dose hydroxylated PCB induces c-Jun expression in PC12 cells. Neurotoxicology 27:176-83.
Shook D, Keller R (2003): Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351-83.
Smith JB, Dwyer SD, Smith L (1989): Lowering extracellular pH evokes inositol polyphosphate formation and calcium mobilization. J Biol Chem 264:8723-8.
Sommers CL, Gelmann EP, Kemler R, Cowin P, Byers SW (1994): Alterations in beta-catenin phosphorylation and plakoglobin expression in human breast cancer cells. Cancer Res 54:3544-52.
Takeda H, Nagafuchi A, Yonemura S, Tsukita S, Behrens J, Birchmeier W, Tsukita S (1995): V-src kinase shifts the cadherin-based cell adhesion from the strong to the weak state and beta catenin is not required for the shift. J Cell Biol 131:1839-47.
Takeichi M (1990): Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237-52.
Takeichi M (1993): Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5:806-11.
Tannock IF, Rotin D (1989): Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373-84.
Thiery JP (2002): Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442-54.
Trevani AS, Andonegui G, Giordano M, Lopez DH, Gamberale R, Minucci F, Geffner JR (1999): Extracellular acidification induces human neutrophil activation. J Immunol 162:4849-57.
Tsukita S, Tsukita S, Nagafuchi A, Yonemura S (1992): Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr Opin Cell Biol 4:834-9.
Vaupel P, Kallinowski F, Okunieff P (1989): Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449-65.
Vondriska TM, Zhang J, Song C, Tang XL, Cao X, Baines CP, Pass JM, Wang S, Bolli R, Ping P (2001): Protein kinase C epsilon-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 88:1306-13.
Wang JQ, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F (2004): TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 279:45626-33.
Webb SD, Sherratt JA, Fish RG (1999): Alterations in proteolytic activity at low pH and its association with invasion: a theoretical model. Clin Exp Metastasis 17:397-407.
Webb SD, Sherratt JA, Fish RG (2001): Modelling tumour acidity and invasion. Novartis Found Symp 240:169-81; discussion 181-5.
Yamagata M, Hasuda K, Stamato T, Tannock IF (1998): The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 77:1726-31.
Yap AS, Brieher WM, Gumbiner BM (1997): Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119-46.
Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT (1996): The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10:1443-54.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文