|
[1] R. Adams and L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6):0 641--647, 1994.
[2] M. N. Ahmed and A. A. Farag. Volume segmentation of CT/MRI images using multiscale features, self-organizing principal components analysis (SOPCA), and self-organizing feature map (SOFM). In Proc. of the ICNN97, volume III, pages 1373--1378, 1997.
[3] N. Archip, P.-J. Erard, M. Egmont-Petesen, J.-M. Haefliger, and J.-F. Germond. A knowledge-based approach to automatic detection of the spinal cord in CT images. IEEE Transactions on Medical Imaging, 21(12): 1504--1516, Dec. 2002.
[4] R. R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang. Automatic recognition of USGS land use/cover categories using statistical and neural networks classifiers. In SPIE OE/Aerospace and Remote Sensing, Bellingham, WA, 1993. SPIE.
[5] B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 144--152. ACM Press, 1992.
[6] G. Bueno, O. Musse, F. Heitz, and J.-P. Armspach. 3D watershed-based segmentation of internal structures within MR brain images. In Proc. SPIE, Medical images 2000: Image processing, volume 3797, pages 906--916, 2000.
[7] S. S. C. Burnett, G. Startkschall, C. W. Stevens, and Z. Liao. A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal. Medical Physics, 31(2): 251--263, Feb. 2004.
[8] S. Cagnoni, A. B. Dobrzeniecki, R. Poli, and J. C. Yanch. Genetic algorithm-based interactive segmentation of 3D medical images. Image and Vision Computation, 17(12):881--895, 1999.
[9] V. Chalana, M. Sannella, and D. R. Haynor. General-purpose software tool for serial segmenation of stacked images. In Proc. SPIE, Medical Images 2000: Image processing, volume 3979, pages 192--203, 2000.
[10] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[11] C.-C. Chang and C.-J. Lin. Training nu-support vector classifiers: Theory and algorithms. Neural Computation, 13 (9): 2119--2147, 2001.
[12] C.-C. Chang, C.-W. Hsu, and C.-J. Lin. The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 11(4): 1003--1008, 2000.
[13] Y.-L. Chang and X. Li. Adaptive image region-growing. IEEE Transactions on Image Processing, 3(6): 868--872, 1994.
[14] C. W. Chen, J. Luo, and K. J. Parker. Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Transactions on Image Processing, 7(12): 1673--1683, Dec. 1998.
[15] P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 17: 893--908, July 2006. URL http://www.csie.ntu.edu.tw/~cjlin/papers/generalSMO.pdf.
[16] C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20: 273--297, 1995.
[17] C. Cortes, P. Haffner, and M. Mohri. Positive definite rational kernels. In Proceedings of the 16th Annual Conference on Learning Theory, pages 41--56, 2003.
[18] D. J. Crisp and C. J. C. Burges. A geometric interpretation of nu-SVM classifiers. In S. Solla, T. Leen, and K.-R. Muller, editors, Advances in Neural Information Processing Systems, volume 12, Cambridge, MA, 2000. MIT Press.
[19] C. L. B. D. J. Newman, S. Hettich and C. J. Merz. UCI repository of machine learning databases. Technical report, University of California, Irvine, Dept. of Information and Computer Sciences, 1998. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
[20] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research, 6: 1889--1918, 2005. URL http://www.csie.ntu.edu.tw/~cjlin/papers/quadworkset.pdf.
[21] J. J. Fu, S.-K. Lee, S. T. Wong, J.-Y. Yeh, A.-H. Wang, and H. Wu. Image segmentation feature selection and pattern classification for mammographic microcalcification. Computerized Medical Imaging and Graphics, 29, 2005.
[22] R. C. Gonzalez and R. E. Woods. Digital Image Processing, Second Edition. Prentice-Hall, Inc., New Jersey, 2002.
[23] T. K. Ho and E. M. Kleinberg. Building projectable classifiers of arbitrary complexity. In Proceedings of the 13th International Conference on Pattern Recognition, pages 880--885, Vienna, Austria, August 1996.
[24] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
[25] D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support vector machines. Machine Learning, 51:51--71, 2003. URL http://www.c3.lanl.gov/~dhush/machine_learning/svm_decomp.ps.
[26] T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
[27] T. N. Jones and D. N. Metaxas. Automated 3D segmentation using deformable models and fuzzy affinity. In IPMI, pages 113--126, 1997.
[28] S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for SVM classifier design. Machine Learning, 46: 351--360, 2002.
[29] S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15 (7): 1667--1689, 2003.
[30] S. S. Keerthi and C. J. Ong. On the role of the threshold parameter in SVM training algorithms. Technical Report CD-00-09, Department of Mechanical and Production Engineering, National University of Singapore, Singapore, 2000. URL http://guppy.mpe.nus.edu.sg/~mpessk/papers/decomp.ps.gz.
[31] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt''s SMO algorithm for SVM classifier design. Neural Computation, 13: 637--649, 2001.
[32] D. Lai, N. Mani, and M. Palaniswami. Increasing the step of the Newtonian decomposition method for support vector machines. Technical Report MECSE-29-2003, Dept. Electrical and Computer Systems Engineering Monash University, Australia, 2003.
[33] D. Lai, N. Mani, and M. Palaniswami. A new method to select working sets for faster training for support vector machines. Technical Report MESCE-30-2003, Dept. Electrical and Computer Systems Engineering Monash University, Australia, 2003.
[34] S. Li, T. Fevens, A. Krzyzak, and S. Li. An automatic variational level set segmentation framework for computer aided dental x-rays analysis in clinical environments. Computerized Medical Imaging and Graphics, pages 1--10, 2006.
[35] C.-J. Lin. Formulations of support vector machines: a note from an optimization point of view. Neural Computation, 13 (2): 307--317, 2001.
[36] C.-J. Lin. A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 13(5): 1045--1052, 2002. URL http://www.csie.ntu.edu.tw/~cjlin/papers/stop.ps.gz.
[37] C.-J. Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 12(6): 1288--1298, 2001. URL http://www.csie.ntu.edu.tw/~cjlin/papers/conv.ps.gz.
[38] C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 13(1): 248--250, 2002. URL http://www.csie.ntu.edu.tw/~cjlin/papers/q2conv.pdf.
[39] C.-J. Lin. Linear convergence of a decomposition method for support vector machines. Technical report, Department of Computer Science, National Taiwan University, 2001. URL http://www.csie.ntu.edu.tw/~cjlin/papers/linearconv.pdf.
[40] C.-J. Lin. A Guide to Support Vector Machines.
[41] H.-T. Lin and C.-J. Lin. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, Department of Computer Science, National Taiwan University, 2003. URL http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf.
[42] N. List and H. U. Simon. A general convergence theorem for the decomposition method. In Proceedings of the 17th Annual Conference on Learning Theory, pages 363--377, 2004.
[43] S. Lucidi, L. Palagi, M. Sciandrone, and A. Risi. A convergent decomposition algorithm for support vector machines. Computational Optimization and Applications, 2006. To appear.
[44] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: A survey. Medical Image Analysis, 1 (2): 91--108, 1996.
[45] C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constructive Approximation, 2: 11--22, 1986.
[46] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical Classification. Prentice Hall, Englewood Cliffs, N.J., 1994. Data available at http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.
[47] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to face detection. In Proceedings of CVPR''97, pages 130--136, New York, NY, 1997. IEEE.
[48] L. Palagi and M. Sciandrone. On the convergence of a modified version of SVM-light algorithm. Optimization Methods and Software, 20 (2-3): 315--332, 2005.
[49] D. L. Pham and J. L. Prince. An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. In Medical Images 1998: Image processing, Proc. SPIE, volume 3338, pages 555--563, 1998.
[50] D. L. Pham, C. Xu, and J. L. Prince. Current methods in medical image segmentation. Annual Reviews of Biomedical Engineering, 2:315--337, 2000.
[51] J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
[52] D. Prokhorov. IJCNN 2001 neural network competition. Slide presentation in IJCNN''01, Ford Research Laboratory, 2001. http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf .
[53] P. K. Sahoo, S. Soltani, A. K. Wong, and Y. C. Chen. A survey of thresholding techniques. Computer Vision, Graphics and Image Processing, 41: 233--260, 1988.
[54] B. Scholkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms. Neural Computation, 12: 1207--1245, 2000.
[55] B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Computation, 13(7): 1443--1471, 2001.
[56] J. Sijbers, P. Scheunders, M. Verhoye, A. van der Linden, D. van Dyck, and E. Raman. Watershed based segmentation of 3D MR data for volume quantization. Magnetic Resonance Imaging, 15 (4): 69--688, 1997.
[57] H. U. Simon. On the complexity of working set selection. In Proceedings of the 15th International Conference on Algorithmic Learning Theory (ALT 2004), 2004.
[58] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, NY, 1995.
[59] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.
[60] S. Wegner, T. Harms, H. Oswald, and E. Fleck. The watershed transformation on graphs for segmetnation of CT images. In Proc. of the 13th ICPR, pages 498--502, 1996.
[61] Y. Zhan and D. Shen. Deformable segmentation of 3-D ultrasound prostate images using statistical texture machine method. IEEE Transactions on Medical Imaging, 25(3): 256--272, Mar. 2006.
|