|
1.Myers S, Baker A: Drug discovery--an operating model for a new era. Nat Biotechnol 2001, 19:727-730. 2.Walters WP: Virtual screening-an overview. Drug Discovery Today 1998, 3:160. 3.Tame JR: Scoring functions: a view from the bench. J Comput Aided Mol Des 1999, 13:99-108. 4.HJ Böhm MS: Rapid empirical scoring functions in virtual screening applications. Med Chem Res 1999, 9:445-462. 5.Ajay, Murcko MA: Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem 1995, 38:4953-4967. 6.Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP: Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 1997, 11:425-445. 7.Zhang Z-W: Developing "Class-Optimized" Scoring Functions for Drug Design. National Taiwan University, Pharmacy; 2006. 8.Huang SY, Zou X: An iterative knowledge-based scoring function to predict protein-ligand interactions: I. Derivation of interaction potentials. J Comput Chem 2006, 27:1866-1875. 9.Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M: LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 2005, 23:395-407.
10.Kellogg GE, Micaela F, Francesca S, Alessio L, Pietro C, Andrea M: Getting it right: modeling of pH, solvent and "nearly" everything else in virtual screening of biological targets. Journal of Molecular Graphics and Modelling 2004, 22:479-486. 11.Muryshev AE, Tarasov DN, Butygin AV, Butygina OY, Aleksandrov AB, Nikitin SM: A novel scoring function for molecular docking. J Comput Aided Mol Des 2003, 17:597-605. 12.Wang RL, L.; Wang, S: Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput-Aided Mol Des 2002, 16:1126. 13.Ishchenko AV, Shakhnovich EI: SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 2002, 45:2770-2780. 14.Stahl M, Rarey M: Detailed analysis of scoring functions for virtual screening. J Med Chem 2001, 44:1035-1042. 15.Gohlke H, Hendlich M, Klebe G: Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 2000, 295:337-356. 16.Muegge I, Martin YC: A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 1999, 42:791-804. 17.Mitchell JBO: BLEEP-potential of mean force describing protein-ligand interactions: I. Generating potential. Journal of Computational Chemistry 1999, 20:1165. 18.Mitchell JBO: BLEEP - potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. Journal of Computational Chemistry 1999, 20:1177. 19.Wang R: SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex. Journal of Molecular Modeling 1998, 4:379. 20.Morris GM: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998, 19:1639. 21.Bohm HJ: Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 1998, 12:309-323. 22.Head RDe: VALIDATE: A NEW METHOD FOR THE RECEPTOR-BASED PREDICTION OF BINDING AFFINITIES OF NOVEL LIGANDS. Journal of the American Chemical Society 1996, 118:3559-3969. 23.Teramoto R, Fukunishi H: Supervised consensus scoring for docking and virtual screening. J Chem Inf Model 2007, 47:526-534. 24.Jain T, Jayaram B: Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Proteins 2007. 25.Wang R, Lu Y, Wang S: Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 2003, 46:2287-2303. 26.Kim KH: Outliers in SAR and QSAR: is unusual binding mode a possible source of outliers? J Comput Aided Mol Des 2007, 21:63-86. 27.Yang CY, Wang R, Wang S: M-score: a knowledge-based potential scoring function accounting for protein atom mobility. J Med Chem 2006, 49:5903-5911.
28.Wang R, Fang X, Lu Y, Yang CY, Wang S: The PDBbind database: methodologies and updates. J Med Chem 2005, 48:4111-4119. 29.Smola AJ, Schölkopf B: A tutorial on support vector regression. Statistics and Computing 2004, 14:199-222. 30.Vapnik, Naumovich V: The Nature of Statistical Learning Theory. New York: Springer; 2000. 31.Chang C-C, Lin C-J: LIBSVM: a library for support vector machines. 2001. 32.Team RDC: R: A Language and Environment for Statistical Computing. 2007. 33.Tondel K, Anderssen E, Drablos F: Protein Alpha Shape (PAS) Dock: a new gaussian-based score function suitable for docking in homology modelled protein structures. J Comput Aided Mol Des 2006, 20:131-144. 34.PDBsum http://www.ebi.ac.uk/pdbsum/. 35.Ekegren JK, Unge T, Safa MZ, Wallberg H, Samuelsson B, Hallberg A: A new class of HIV-1 protease inhibitors containing a tertiary alcohol in the transition-state mimicking scaffold. J Med Chem 2005, 48:8098-8102. 36.Shneiderman ASD: A Telescope for High-Dimensional Data. Computing in Science & Engineering 2006, 8:48.
|