跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 18:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳智棚
研究生(外文):Chih-Peng Wu
論文名稱:應用非線性函數於分子嵌合能量函數之研究
論文名稱(外文):A study on non-linear regression of the energy scoring function for molecular docking
指導教授:歐陽彥正歐陽彥正引用關係
指導教授(外文):Yen-Jen Oyang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:46
中文關鍵詞:嵌合蛋白質虛擬藥物設計評分函數
外文關鍵詞:dockingproteinvirtual screeningscoring function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用分子嵌合模擬在資料庫中找出合適合的化合物已經是現今虛擬藥物蒒選很重要的一個部分。但如今的分子嵌合模擬在評分函數的部分仍有很多的進步空間。目前評分函數都會遭遇到一個稱作例外者的問題。實際能量比預測能量高出許多的例外者復合體在分子嵌合模擬時更顯得重要。這篇論文提出了一個使用非線性函數模型的評分函數以及例外者自動偵測的機制。在使用的607個蛋白質配體的複合體資料集中,這個非線性評分函數得到之RMSE(root-mean-squared-error)為 2.13千卡每莫耳,相對於Autodock程式在相同資料集的3.543千卡每莫耳,可以得到更好的結果。再進一步使用例外者自動偵測後,可以將RMSE降到2千卡每莫耳的準度。如結果所示,新的評分函數配合例外者偵測的幫助,可以提供未來生化分析時更多的線索。
Virtual screening by molecular docking has become a crucial component for hit identification and lead optimization against very large libraries of compounds, but there is still much room for improvement in design of scoring function. The most common problem of existing scoring functions is the existence of “outliers”. Outliers of molecular docking can be very important and interesting especially when the observed biological activity is higher than the predicted one by scoring function. This article proposes a non-linear scoring function along with outlier detection. The evaluation is conducted with a comparison against the scoring function incorporated in the well-known AutoDock docking package. Based on the testing dataset from 607 protein-ligand complexes, the proposed non-linear scoring function has RMSE (root-mean-squared-error) equal to 2.13 kcal/mol that is comparable with the scoring function in AutoDock (3.453 kcal/mol). Moreover, with the proposed outlier detection mechanism, the RMSE could improve to 2.0 kcal/mol. As a result, the proposed scoring function with outlier detection helps the scoring quality and provides valuable clues for further biochemical analysis.
致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
CHAPTER 1 簡介 1
CHAPTER 2 相關研究 5
CHAPTER 3 方法 13
3.1 資料集 13
3.2 SVR及線性迴歸及Gaussian Regression原理 17
3.3 使用非線性函數建立新的評分函數 21
3.4 例外者自動預測 22
CHAPTER 4 實驗 24
4.1 使用非線性函數的評分函數效能 24
4.2 將例外者排除自DATASET中 25
4.3 使用二階段的迴歸 27
4.4 使用SVR及線性迴歸作為第二階段的迴歸工具 27
4.5 使用Gaussian Regression作第二階段迴歸 28
CHAPTER 5 討論 33
5.1 第一階段之例外者 33
5.2 在第二階段預測為例外者之複合體之探討 37
CHAPTER 6 結論 42
參考文獻 43
1.Myers S, Baker A: Drug discovery--an operating model for a new era. Nat Biotechnol 2001, 19:727-730.
2.Walters WP: Virtual screening-an overview. Drug Discovery Today 1998, 3:160.
3.Tame JR: Scoring functions: a view from the bench. J Comput Aided Mol Des 1999, 13:99-108.
4.HJ Böhm MS: Rapid empirical scoring functions in virtual screening applications. Med Chem Res 1999, 9:445-462.
5.Ajay, Murcko MA: Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem 1995, 38:4953-4967.
6.Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP: Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 1997, 11:425-445.
7.Zhang Z-W: Developing "Class-Optimized" Scoring Functions for Drug Design. National Taiwan University, Pharmacy; 2006.
8.Huang SY, Zou X: An iterative knowledge-based scoring function to predict protein-ligand interactions: I. Derivation of interaction potentials. J Comput Chem 2006, 27:1866-1875.
9.Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M: LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 2005, 23:395-407.

10.Kellogg GE, Micaela F, Francesca S, Alessio L, Pietro C, Andrea M: Getting it right: modeling of pH, solvent and "nearly" everything else in virtual screening of biological targets. Journal of Molecular Graphics and Modelling 2004, 22:479-486.
11.Muryshev AE, Tarasov DN, Butygin AV, Butygina OY, Aleksandrov AB, Nikitin SM: A novel scoring function for molecular docking. J Comput Aided Mol Des 2003, 17:597-605.
12.Wang RL, L.; Wang, S: Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput-Aided Mol Des 2002, 16:1126.
13.Ishchenko AV, Shakhnovich EI: SMall Molecule Growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 2002, 45:2770-2780.
14.Stahl M, Rarey M: Detailed analysis of scoring functions for virtual screening. J Med Chem 2001, 44:1035-1042.
15.Gohlke H, Hendlich M, Klebe G: Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 2000, 295:337-356.
16.Muegge I, Martin YC: A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 1999, 42:791-804.
17.Mitchell JBO: BLEEP-potential of mean force describing protein-ligand interactions: I. Generating potential. Journal of Computational Chemistry 1999, 20:1165.
18.Mitchell JBO: BLEEP - potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. Journal of Computational Chemistry 1999, 20:1177.
19.Wang R: SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex. Journal of Molecular Modeling 1998, 4:379.
20.Morris GM: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998, 19:1639.
21.Bohm HJ: Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 1998, 12:309-323.
22.Head RDe: VALIDATE: A NEW METHOD FOR THE RECEPTOR-BASED PREDICTION OF BINDING AFFINITIES OF NOVEL LIGANDS. Journal of the American Chemical Society 1996, 118:3559-3969.
23.Teramoto R, Fukunishi H: Supervised consensus scoring for docking and virtual screening. J Chem Inf Model 2007, 47:526-534.
24.Jain T, Jayaram B: Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Proteins 2007.
25.Wang R, Lu Y, Wang S: Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 2003, 46:2287-2303.
26.Kim KH: Outliers in SAR and QSAR: is unusual binding mode a possible source of outliers? J Comput Aided Mol Des 2007, 21:63-86.
27.Yang CY, Wang R, Wang S: M-score: a knowledge-based potential scoring function accounting for protein atom mobility. J Med Chem 2006, 49:5903-5911.

28.Wang R, Fang X, Lu Y, Yang CY, Wang S: The PDBbind database: methodologies and updates. J Med Chem 2005, 48:4111-4119.
29.Smola AJ, Schölkopf B: A tutorial on support vector regression. Statistics and Computing 2004, 14:199-222.
30.Vapnik, Naumovich V: The Nature of Statistical Learning Theory. New York: Springer; 2000.
31.Chang C-C, Lin C-J: LIBSVM: a library for support vector machines. 2001.
32.Team RDC: R: A Language and Environment for Statistical Computing. 2007.
33.Tondel K, Anderssen E, Drablos F: Protein Alpha Shape (PAS) Dock: a new gaussian-based score function suitable for docking in homology modelled protein structures. J Comput Aided Mol Des 2006, 20:131-144.
34.PDBsum http://www.ebi.ac.uk/pdbsum/.
35.Ekegren JK, Unge T, Safa MZ, Wallberg H, Samuelsson B, Hallberg A: A new class of HIV-1 protease inhibitors containing a tertiary alcohol in the transition-state mimicking scaffold. J Med Chem 2005, 48:8098-8102.
36.Shneiderman ASD: A Telescope for High-Dimensional Data. Computing in Science & Engineering 2006, 8:48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊