跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:唐維志
研究生(外文):Wei-Chih Tang
論文名稱:腦波的特徵擷取用於自動睡眠分期
論文名稱(外文):EEG Feature Extraction for Automatic Sleep Stages Scoring
指導教授:李秀惠李秀惠引用關係
指導教授(外文):Hsiu-Hui Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:56
中文關鍵詞:睡眠分期腦波調和參小波轉換
外文關鍵詞:EEGharmonic parameterssleep stageswavelet transform
相關次數:
  • 被引用被引用:1
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
Polysomnography (PSG) is the must common procedures used for diagnosis of sleep states. One of important task of PSG is sleep stages scoring. Sleeping stage of each 30 second segment is determined by sleep specialist, and scoring stages manually consumes time and human resource. So many automatic sleep stages scoring system was developed.
In this thesis, we proposed a feature set to replace the must common features relative frequency band energy. Our feature set includes harmonic parameters with wavelet transform, Hjorht parameters, wavelet entropy, and wavelet energy. We build an automatic sleep stages scoring system using SVM with RBF kernel using the feature set we found.
The objective of this thesis is providing a better set of features form EEG signals. That can decrease the sensor numbers, and that may measure patients’ sleep state in their houses. The automatic sleep stages scoring model can help the sleep specialists save their time of scoring.
Chapter 1 Introduction...............................................................................................1
1.1 Motivation................................................................................................1
1.2 Research Background and Goal.............................................................2
1.3 Organization of Thesis............................................................................6
Chapter 2 Relative Work............................................................................................7
2.1 Methods of Processing the EEG Signals......................................................7
2.2 Features of EEG Signals...............................................................................9
2.3 Automatic Sleep Stages Scoring System....................................................12
Chapter 3 Methods....................................................................................................14
3.1 Wavelet and Hilbert-Huang Transform....................................................14
3.1.1 Wavelet Transform...........................................................................14
3.1.2 Hilbert-Huang Transform................................................................17
3.2 Feature Extraction.......................................................................................19
3.2.1 Relative Frequency Band Energy...................................................20
3.2.2 Wavelet Entropy and Energy..........................................................24
3.2.3 Hjorth parameters, Domain Frequency and its Strength.............25
3.2.4 Harmonic Parameters......................................................................26
3.3 Support Vector Machine.............................................................................27
Chapter 4 Experiments and Results........................................................................30
4.1 Materials.......................................................................................................30
4.2 Feature Extraction.......................................................................................31
4.2.1 Relative Frequency Band Energy...................................................31
4.2.2 Wavelet Energy and Entropy..........................................................35
4.2.3 Hjorth Parameter, Domain Frequency and its Strength..............37
4.2.4 Harmonic Parameters......................................................................39
4.3 Prediction Model and Feature Selection...................................................44
4.4 Summary of Experiments and Performance Evaluation.........................48
Chapter 5 Conclusions and Future Works..............................................................52
Reference....................................................................................................................54
Chang, Chih-Chung and Chih-Jen Lin, 2007 “LIBSVM: A library for support vector machines” Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
Crisler, S., A Anch, M Morrissey, D Barnett, 2004. Automatic Sleep-Stage Scoring Using Support Vector Machine. Department of Biomedical Engineering, Saint Louis University, available:
http://pages.slu.edu/faculty/ancham/BMESpaper5rev.pdf
Donohue, K. D. and Chris Scheib “EEG Fractal Respond to Anesthetic Gas Concentration” available:
http://www.engr.uky.edu/~donohue/eeg/pre1/EEGpre2.html
Estrada, E., H. Nazeran, P. Nava, K. Behbhani, J. Burk and E. Lucas, 2004 " EEG Feature Extraction for Classification of Sleep Stages", in Proc of the 26th Annual EMBS International Conference of IEEE EMBS, pp. 196–199
Estrada, E., H. Nazeran, P. Nava, K. Behbhani, J. Burk and E. Lucas, 2005 ”Itakura Distance: A Useful Similarity Measure between EEG and EOG Signals in Computer-aided Classification of Sleep Stages” In proc of the 27th Annual EMBS International Conference of IEEE EMBS, pp.1189–1192
Feng, Z.Y., 2003 “Analysis of Rat Electroencephalogram During Slow Wave Sleep and Transition Sleep Using Wavelet Transform” Acta Biochimica et Biophysica Sinica Vol. 35 Issue 8 pp.741-746.
Feng, Zhouyan and Hang Chen, 2005 “Analyze the Dynamic Features of Rat EEG Using Wavelet Entropy” In proc of the 27th Annual EMBS International Conference of IEEE EMBS, pp.833–836
Hayes, M. H., 1996 “Statistical Digital Signal Processing and Modeling“ Wiley, pp 194, 198–199, 440, 447.
Hjorth, B., 1970. EEG Analysis Based on Time Domain Properties. Electroencephalography and Clinical Neurophysiology, Volume 29, pp.306-310.
55
Huang, N. E., Z. Shen, S.R. Long, W.C. Wu, E.H. Shih, Q. Zheng, C.C. Tung and H.H. Liu, 1998 " The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis," in Proc of the Royal Society A454:903-995
Li, Jinghong, Yuyuan Da and Li Hong Zhao, 2005 “Sleep Stage Study with Wavelet Time-frequency Analysis” ICNN&B International conference, pp. 872–875.
Lopes da Silva, F., 1987 “EEG Analysis: Theory and Practice” in Electro-encephalography, Basic Principles, Clinical Applications and Related Fields, Urband & Schwarzenber,CH 53, pp871-897.
Malat S., 1989. A Theory of Multiresolution Signal Decomposition: the Wavelet Representation. IEEE transaction on pattern analysis and machine intelligence, Vol. 11, Issue 7, pp. 674-693.
Meldenson, W. B., 1987 “Human Sleep, Research and Clinical Care” Plenum Medical Book Company New York and London, pp 6–12.
Ning, Taikang and J. D. Bronzino, 1990 “Autoregressive and Bispectral Analysis Techniques: EEG Applications” IEEE Engineering in Medicine and Biology Magazine, pp.47–50
Park, Hae Jeong , Kwang Suk Park and Do Un Jeong, 2000. Hybrid Neural-network and Rule-based Expert System for Automatic Sleep Stage Scoring. In proc of the 22nd Annual EMBS International Conference of IEEE EMBS, pp. 1316 - 1319.
Polikar, Robi, 1999 “The Wavelet Tutorial” available:
http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html
Rechtschaffen, A. and A. Kales, 1968 "A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects" Washington D.C: Public Health Service, U.S. Government Printing Office
Tian, J.Y. and J.Q. Liu, 2005. Automatic Sleep staging by a Hybrid System Comprising Neural Network and Fuzzy Rule-based Reasoning. In proc of the 27th Annual EMBS International Conference of IEEE EMBS, pp.4115–4118.
56
Van Hese, P., W. Philips, J. De Koninck, R. Van de Walle and I.Lemahieu, 2001 “Automatic Detection of Sleep Stages Using the EEG”, in Proc of the 23rd Annual EMBS International Conference of IEEE EMBS, pp. 1994–1947
Webster, J. G., 1998 “Medical Instrumentation, Application and Design” Third Edition, Wiley, pp 165–171.
Ye, Zhiqian, Fuying Tian and Jianfeng Weng, 2005 “EEG Signal Processing in Anesthesia-using Wavelet-based Information Tools” In proc of the 27th Annual EMBS International Conference of IEEE EMBS, pp.4127–4129
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊