跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 05:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許傅鈞
研究生(外文):Fu-Chun Hsu
論文名稱:以支援向量機硬體為基礎的影片分段界線偵測系統設計與實作
論文名稱(外文):Design and Implementation of Hardware-SVM-based Shot Detection System
指導教授:顧孟愷
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:52
中文關鍵詞:支援向量機硬體影片分段偵測
外文關鍵詞:Support Vector Machinehardwareshot boundary detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Structural analysis of video is an essential step to automatic video content
analysis. In a general video structure, shot is the most basic unit, and it must
be determined before any multimedia content-based retrieval applications.
However, despite the rich research efforts in software shot detection system,
there is a lack of shot detection system that is designed in hardware. In
this thesis, we proposed a shot boundary detection system using hardwarebased
Support-Vector-Machine(SVM). Our system can detect both cut shots
and gradual shots. We optimized the feature extraction process based on
global color histogram with a pipelined architecture to save memory and
increase the overall speed. The class imbalance problem in shot detection is
solved by using random pseudo-sampling at the SVM training stage. The
digital hardware SVM is designed using a fully-parallel pipelined architecture
and is highly configurable on vector dimensions. Our data wordlength only
used 4 bits signed integer plus one bit decimal in fixed number, while the
detection accuracy is competitive comparing with floating point software.
Our SVM classifier presented here can run a speed up to 251.62MHZ on
Xilinx Virtex IV XC4VSX35 FPGA, and the video processing on our shot
detection system can achieve 128 fps on PC. That makes our system met the
real-time constraints, and detect shots in a continous video stream such as
live-TV news or sports game.
1 Introduction 1
1.1 Overview or shot boundary detection System . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Shot Boundary Detecton System and SVM 10
2.1 Introduction of the Shot Boundary Detection System . . . . . 11
2.1.1 Features Extraction . . . . . . . . . . . . . . . . . . . . 12
2.1.1.1 General Features ExtractionMethods . . . . 13
2.1.1.2 Temporal Kernel Correlation Filtering . . . . 15
2.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Brief Introduction . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Shot boundary classification using SVM . . . . . . . . 19
2.2.3 Hardware Implementation of SVM . . . . . . . . . . . 20
2.2.4 Hardware Shot Detector . . . . . . . . . . . . . . . . . 21
3 System and Hardware Architecture 22
3.1 Feature Extraction in Shot Boundart Detection . . . . . . . . 23
3.1.1 Visual Representation of Video . . . . . . . . . . . . . 23
3.1.2 Continuity FeatureMeasurement . . . . . . . . . . . . 24
3.1.3 A Pipelined Temporal Kernel Correlation Architecture 25
3.2 Support Vector Machine Architecture . . . . . . . . . . . . . . 26
3.2.1 Proposed Hardware Architecture . . . . . . . . . . . . 28
3.2.1.1 Hardware design platform . . . . . . . . . . . 28
3.2.1.2 Class Imbalance in Shot Boundary Detection 29
3.2.1.3 A Fully-Parallel Pipelined SVM . . . . . . . . 30
3.2.2 Post-processing Refinement of Shot Detection System . 33
4 Experimental Result 35
4.1 EvaluationMetrics . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Training using RandomPseudo-Negative sampling . . . . . . . 36
4.3 Hardware Synthesizing Results . . . . . . . . . . . . . . . . . . 38
4.3.1 Result compares with other SVMhardwares . . . . . . 38
4.3.2 Result compares with other hardware shot detector . . 39
4.4 Wordlength Quantization . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Discussion on Effects of Quantization in Shot Detection 42
4.5 Performance of the Proposed Shot Detection System . . . . . 44
4.5.1 Realtime Shot Detection on Various Video Types . . . 45
5 Conclusion 48
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
[1] H.J. Zhang, Low, Smoliar. “Automatic partitioning of full-motion
video”, Multimedia Systems 1, 1993
[2] Koprinska, Carrato. “Temporal video segmentation: A survey”, Signal
Processing: Image Communication,2001
[3] Faisal M.Khan et.al. “Hardware-Based Support Vector Machine Classification
in Logarithmic Number Systems” Circuits and Systems, 2005,
ISCAS, IEEE Symposium on
[4] J. Yuan, et.al. “ A Formal Study of Shot Boundary Detection”, Circuit
and Systems For Video Technology, 2007, IEEE Transaction on
[5] V.Vapnik. “The National of Statistical Learning Theory”, 1st ed., New
York: Springer-Verlag, 1995
50
[6] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library
for support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm
[7] M. Cooper and J. Foote. Scene Boundary Detection Via Video Self-
Similarity Analysis. Image Processing,2001,Proc. IEEE Intl. Conf. on
[8] M.Cooper, et.al. “Video Segmentation via Temporal Pattern Classification”,
Transaction on Multimedia, 2007, IEEE Transaction on
[9] D.Anguita, A.Boni, et.al.“A Digital Architecture for Support Vector
Machines: Theory, Algorithms, and FPGA Implementation,” Neural
Networks, 2003, IEEE Transaction on
[10] A. Hanjalic. “Shot boundary detection: unraveled and resolved?,” Circuits
Syst. Video Technol, 2002, IEEE Transaction on
[11] R.Genov, et.al.“Kerneltron: Support Vector Machine in Silicon,”, Neural
Networks,vol.14, no.5, pp.1426-1434, 2003, IEEE Transactions on
[12] R.Herbich. Learning Kernel Classifiers:Theory and Algorithms. Cambridge:
The MIT Press, 2002.
[13] A. Amir, et al.,“IBM Research TRECVID-2003 Video Retrieval System”
TRECVID Workshop, 2003.
51
[14] J.Yuan, et al., “A unified shot boundary detection framework based on
graph partition model,” Multimedia, 2005, ACM proc.
[15] Ngo, “A robust dissolve detector by support vector machine,” Multimedia,
2003, ACM proc.
[16] T.Chua, et al.,“An unified framework for shot boundary detection via
active learning,” Proc. ICASSP, 2003
[17] Feng, et.al., “A new general framework for shot boundary detection and
key-frame extraction,” Int. Workshop Multimedia Inf. Retrieval, 2005,
ACM SIGMM
[18] Burges, “A tutorial on support vector machines for pattern recognition,”
Data mining know. Discov.,, 1998
[19] Apostol Natsev, Milind Naphade, Jelena Tesic,“Learning the Semantics
of Multimedia Queries and Concepts from a Small Number of Examples,”
2005, ACM Multimedia
[20] J.S. Boreczky, L.A. Rowe, ”Comparison of video shot boundary detection
techniques,” Proc of SPIE- Storage and Retrieval for Still Image
and Video Databases IV, Vol. 2670, San Diego, 1996
[21] A real-time shot cut detector: Hardware implementation, L. Boussaid,
et.al, “Standard & Interfaces”, 2007, ACM
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 尤逸歆(2004).老化與休閒運動.大專體育,70,160-164。
2. 李世代(2001).長期照護之概說.當代醫學,29(1),60-69。
3. 李世代(2000).長期照護需求推估之探討.社區發展季刊,92,66-83。
4. 李青松(2002).高齡者休閒參與之研究.中華家政學刊,31,21-38 。
5. 宋美瑩(2003) .改善住民活動專案—音域治療及其他.長期照護雜誌,7(3),205-215。
6. 阮美蘭(民84a).憂鬱症認知治療團體的理論與過程(上).諮商與輔導,113,19-24。
7. 林佳蓉(2000).老人的休閒參與對休閒滿意和生活滿意之影響.大專體育,51,156-162。
8. 林昭宏(2005).體能活動對於老年人認知功能的影響.物理治療,30(6),325-331。
9. 林怡君、余豎文、張宏哲(2004).新店地區機構和非機構老人憂鬱情形及相關因素之調查.臺灣家庭醫學雜誌,14(2),81-93。
10. 邱裕峰、張智仁、葉宗烈(1991).北門鄉老人認知障礙和憂鬱症狀的盛行率問卷調查.中華精神醫學,5,123-131。
11. 洪百薰、林豐雄、洪美玟、黃明珠、吳聖良(1991).老人健康狀況與需求評估.公共衛生,18(3),212-235。
12. 洪升呈(2005).身體活動對老年人心理健康的影響.大專體育,78,153-157。
13. 施清發、陳武宗、范麗娟(2000).高雄市老人休閒體驗與休閒參與程度之研究.社區發展季刊,92,346-358 。
14. 施春華、侯淑英、楊明仁、張麗珍、張自強、黃俊仁(2005).社區老人憂鬱症狀的流行病學籍活動參與介入成效.實證護理,1(1),29-34 。
15. 高俊雄(1999).運動員休閒參與、休閒利益與自覺訓練效果之比較研究.戶外遊憩研究,12(3),43-61。