跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊伶琪
研究生(外文):Lin-Chi Yang
論文名稱:電子商務中促進個人化推薦之服務中介者探討
論文名稱(外文):User-Centric Service Mediator for Personalized Recommendations in E-Commerce
指導教授:曹承礎曹承礎引用關係
指導教授(外文):Seng-cho T. Chou
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2005
畢業學年度:95
語文別:中文
論文頁數:67
中文關鍵詞:推薦系統內容導向式推薦貝式分類法電子商務個人化服務
外文關鍵詞:Recommender SystemContnet-based RecommendationNaive Bayes ClassifierE-CommercePersonalization
相關次數:
  • 被引用被引用:3
  • 點閱點閱:475
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
隨著網際網路的發展及資訊科技的進步,網路逐漸成為現代人接受資訊十分重要的管道之一,其低成本且分散式的特性,使得越來越多個人或企業透過網路散播資訊或提供商業服務,然而一旦資訊過多且雜亂,對網路使用者來說反而造成負擔,這就是所謂的「資訊超載」問題。推薦系統根據使用者的喜好,幫助使用者從大量的資料中篩選出他所需要的資訊,商業網站經常透過此種系統的運作,推薦顧客喜歡的商品或服務給他們,以增加交易成功的機會、提高顧客對網站的忠誠度。
推薦系統常用的技術主要可歸納為兩種,合作式推薦與內容導向式推薦,這兩種技術各有所長,相對的也各有其限制,同時結合兩種技術的混合式推薦才能截長補短,獲得較好的推薦效果;而目前關於使用者的偏好分散保存於不同網站裡的架構較適有利於合作式推薦的使用。
本篇論文為此提出了服務中介者的架構,能夠集中保存使用者對不同服務項目的偏好,在不直接透露使用者偏好的情況下,服務提供者亦能從我們的中介者取得推薦的參考,提升推薦的品質;本研究著眼於網際網路上提供資訊商品的電子商務網站,並且以貝式分類法為基礎,計算推薦的結果;最後以實驗的方式說明架構的可行性,結果顯示集中保存使用者偏好的方式確實對推薦的效果有助益,也能提高資訊的使用率。
Advancement of Internet and information technology brings some phenomenons: a. Internet becomes one of our important channels to access new information; b. more and more people and enterprises spread information or provide services through the Internet. However, the situation often causes “Information Overload problem,” which means too much information to be produced and users have too little time to properly digest it. Fortunately, Recomender Systems are one of the well-known solutions to information overload by helping users filter out unnecessary information. Such systems are thus in widespread use by service providers to enhance E-commerce sales.
Based on how recommendations are made, recommender systems are usually classified into two main categories: collaborative recommendations and content-based recommendations. Both two techniques have their advantages and limitations, and it is proved that combining the two methods have more satisfied recommendation results. However, current architecture which user profiles are decentrally stored in different websites facilitates collaborative recommendations instead of content-based methods.
In this thesis, we propose a service mediator system which mediates between the users and the service providers to centrally collect user profiles and without directly releasing user profiles, service providers would gain the “recommendation references” from the serive mediator. We focus on information goods in E-commerce, and the recommendation technique is based on Naïve Bayes Classifier. Finally we apply several experiments to test the feasibility of our system.
論文摘要 四
THESIS ABSTRACT 五
目錄 七
表次 九
圖次 一ま
第一章 緒論 1
第一節 研究背景 1
第二節 簡介 3
1.2.1 推薦系統 3
1.2.2 服務中介者(Service Mediator) 4
1.2.3 文件分類(Text Categorization) 5
第三節 研究動機 6
第四節 研究目標 8
第五節 研究範圍及限制 9
第六節 研究架構 9
第二章 文獻探討 10
第一節 推薦系統 10
2.1.1 推薦系統應用於電子商務的實例介紹 12
2.1.2 協同合作式推薦 16
2.1.3 內容導向式推薦 18
2.1.4 混合式推薦 21
2.1.5 使用者概況資料來源 22
第二節 個人化服務 23
第三節 文件分類(TEXT CATEGORIZATION) 24
第三章 達到跨服務個人化推薦的服務中介者(SERVICE MEDIATOR)設計 26
第一節 設計議題(DESIGN ISSUES) 26
第二節 系統架構(SYSTEM ARCHITECTURE) 28
3.2.1 Service Filter (SF) 30
3.2.2 Content Extractor (CE) 30
3.2.3 Feedback Aggregator (FA) 31
3.2.4 Profile Manager (PM) 32
第三節 核心:推薦流程 33
3.3.1 內容導向式推薦(Content-Based Methods) 33
3.3.2 單純貝式分類(Naïve Bayes Classifier) 34
3.3.3 應用於跨服務內容導向式推薦 35
第四章 系統實作與實驗分析 40
第一節 資料來源 40
第二節 實驗流程 41
第三節 實驗情境及結果分析 48
第四節 總結與討論 58
第五章 結論與未來展望 60
第一節 結論 60
第二節 未來展望 61
參考文獻 63
參考網頁 67
[1]A.I. Schein, A. Popescul, L.H. Ungar, and D.M. Pennock, “Methods and Metrics for Cold-Start Recommendations,” Proc. 25th Ann. Int’l ACM SIGIR Conf., 2002.
[2]Abbattista, F., Degemmis, M., Fanizzi, N., Licchelli, O., Lops, P., Semeraro, G., and Zambetta, F., “Learning User Profiles for Content-Based Filtering in e-Commerce,” in Proceedings AI*AI Workshop su Apprendimento Automatico: Metodi e Application. Sienna, Italy, 2002.
[3]Adomavicius, G., Tuzhilin, A., “Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, No.6, 2005.
[4]Apte’, C., Damerau, F., Weiss, S. M., “Automated Learning of Decision Rules for Text Categorization,” ACM Transaction on Information Systems, vol.12, No.3, pp.233-251, 1994.
[5]Balabanovic, M., Shoham, Y., “Fab: Content-based, Collaborative Recommendation,” Comm. ACM, vol. 40, no.3, pp.66-72, 1997.
[6]Berkovsky, S., “Ubiquitous User Modeling in Recommender Systems,” in Proc. of the UM Conference, Edinbirgh, UK, 2005.
[7]Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin, M., “Combining Content-Based and Collaborative Filters in an Online Newspaper,” Proc. ACM SIGIR ’99 Workshop Recommender Systems: Algorithms and Evaluation, Aug. 1999.
[8]Dumais, S., Platt, J., Heckerman, D., and Sahami, M., “Inductive Learning Algorithms and Representations for Text Categorization,” Proceedings of the 1998 ACM 17th International Conference on Information and Knowledge Management(CIKM’98), pp.148-155, 1998.
[9]Grorge Karypis, “Evaluation of Item-based Top-N Recommendation Algorithms,” Technical Report #00-046, Department of Computer Science, University of Minnesota/Army HPC Research Center.
[10]Hanani, U., Shapira, B., Shoval, P., “Information Filtering: Overview of Issues, Research and Systems,” in User Modeling and User Adapted Interactions, vol.11(3), pp.203-259, 2001.
[11]J. Fink, A. Kobsa, “A Review and Analysis of Commerical User Modeling Servers for Personalization on the World Wide Web,” User Modeling and User-Adapted Interaction, 2000.
[12]J.J. Rocchio, “Relevance Feedback in Information Retrieval,” SMART Retrieval System-Experiments in Automatic Document Processing, G. Salton, ed., ch.14, Prentice Hall, 1971.
[13]JB Schafer, “Recommender Systems in E-Commerce,” E-Commerce of the ACM, 1999.
[14]JB Schafer, JA Konstan, J Riedl, “E-Commerce Recommendation Applications,” Data Mining and Knowledge Discovery, 5, p115-p153, 2001.
[15]Joachims, T., Freitag, D. and Mitchell, T., “WebWatcher: A tour guide for the World Wide Web,” Proceedings of 15th International Joint Conference on Artificial Intelligence, IJCAI’97, pp. 770-775, 1997.
[16]Lang, K., “NewsWeeder: Learning to filter netnews,” In Proceedings of the 12th International Conference on Maching(Tahoe City, Calif), 1995.
[17]Mitchell T., “Machine Learning,” McGraw-Hill, New York, 1997.
[18]Paul Resnick and Hal R. Varian., “Recommender Systems,” Commnuication of ACM, 40(3):56-58, 1997
[19]Pazzani, M. and Billsus, D., “Learning and Revising User Profiles: The Identification of Interesting Web Sites,” Mechine Learning, vol. 27, pp. 313-331, 1997
[20]Porter, Martin, “An Algorithm for Suffix Stripping,” in Progam, vol. 14, no. 3, 1980.
[21]R. J. Mooney and L. Roy, “Content-Based Book Recommending Using Learning for Text Categorization,” Proceedings of the Fifth ACM Conference on Digital Libraries, San Antonio, TX, pp. 195-204, June 2000.
[22]R. Kohavi, B. Becker, and D. Sommerfield, “Improving simple Bayes,” Proceedings of the European Conference on Machine Learning, 1997.
[23]Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P. and Riedl, J., “Grouplens: An Open Architecture for Collaborative Filtering of Netnews.” In Proceedings of ACM CSCW’94, 1994.
[24]Soboroff, I., and Nicholas, C., “Combining Content and Collaboration in Text Filtering,” Proc. Int’l Joint Conf. Artificial Intelligence Workshop: Machine Learning for Information Filtering, Aug. 1999.
[25]T. Anderson and J. D. Finn, “The New Statistical Analysis of Data,” Springer Verlag, New York, 1996.
[26]T.W. Malone, K.R. Grant, F.A.Turbak, S.A.Brobst, and M.D.Cohen, “Intelligent Information Sharing System,” Communications of the ACM, 30, 5, 1987.
[27]Terveen, L. and Hill, W., “Beyond Recommender System: Helping People Help Each Other,” in HCI in the New Millennium, Jack Carroll, ed., Addison-Wesley, 2001.
[28]劉先烜, “協同合作式社會網絡篩選:結合網頁結構探勘與協同合作式篩選的個人化機制,” 台大資管所碩士論文, 民國九十一年六月。
[29]Amazon. http://www.amazon.com/
[30]CDNow. http://www.cdnow.com.
[31]eBay. http://www.ebay.com/
[32]MovieFinder. http://www.moviefinderonline.com/
[33]MovieLen. http://www.movielen.com
[34]Reel. http://www.reel.com
[35]文件自動分類. http://www.lins.fju.edu.tw/~tseng/ResearchResults/categorization.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top