|
Alfredsson, P. H., Johansson, A.V., Haritonidis, J. H., and Eckelmann, H. (1988). The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids, 31, 1026-1033. Andreopoulos, J., and Bradshaw P. (1981). Measurement of turbulence structure in the boundary layer on a rough surface. Boundary-Layer Meteorology, 20, 201-213. Andreopoulos, J., Durst, F., Zaric, Z., and Jovanovic, J. (1984). Influence of Reynolds number on characteristics of turbulent wall boundary layers. Exp. Fluids, 2, 7-16. Balakrishnan, S., Roy, A., Ierapetritou, M. G, Flach, G. P, and Geogrgopoulos, P. G. (2003). Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method. Water Resour. Res., 39(12), 1350. Bandyopadhyay, P. R. (1987). Rough-wall turbulent boundary layers in the transitional regime. J. Fluid Mech., 180, 231-266. Barndorff-Nielsen, O. (1979). Models for non-Gaussian variation with applications to turbulence. Proc. R. Soc. London, A368, 501-520. Boneh, A., and Golan, A. (1979). Constraints’ redundancy and feasible region boundedness by random feasible point generator (RFPG). Third European Congress on Operations Research, EURO III, Amsterdam (April 9-11). Box, G. E. P. (1980) Sampling and Bayes'' inference in scientific modelling and robustness (with disscussion). J. R. Statist. Soc A, 143, 383-430. Bridge, J. S., and Bennett, S. J. (1992). A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resour. Res., 28(2), 337-363. Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. J. Comput. Graphical Stat., 7, 434-455. Brooks, S. P., and Giudici, P. (2000). Markov chain Monte Carlo convergence assessment via two-way analysis of variance. Journal of Computational and Graphical Statistics, 9(2), 266-285. Cheng, N. S., and Chiew, Y. M. (1998). Pickup probability for sediment entrainment. J. Hydr. Eng., 124(2), 232-235. Chen, N. S., and Chiew, Y. M. (1999). Closure to ‘Pickup probability for sediment entrainment’. J. Hydr. Eng., 125(7), 789. Cochrane, J. L., and Zeleny, M. (1973). Multiple Criteria Decision Making. University of South Carolina Press, Columbia. Cowles, M. K., and Carlin, B. P. (1994). Markov chain Monte Carlo convergence diagnostics: a comparative review. Technical Report 94-008, Division of Biostatistics, School of Public Health, University of Minnesota. Di Cicca, G. M., Iuso, G., Spazzini, P. G., and Onorato, M. (2002). Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J. Fluid Mech., 467, 41-56. Dittrich, A., Nestmann, F., and Ergenzinger, P. (1996). Ratio of lift and shear forces over rough surfaces. Coherent flow structures in open channels, P. J. Ashworth, S. J. Bennett, J. L. Best, and S. J. McLelland, eds., John Wiley, Chichester, 125-146. Durst, F., Jovanovic, J., and Kanevce, L. (1987). Probability density distribution in turbulent wall boundary-layer flows. Turbulent Shear Flow 5, Springer-Verlag Berlin Heidelberg , 197-220. Fischer, P. F., Leaf, G. K., and Restrepo, J. M. (2002). Forces on particles in oscillatory boundary layers. J. Fluid Mech., 468, 327-347. Frenkiel F. N., and Klebanoff P. S. (1967). Higher-order correlations in a turbulent field. Phys. Fluids, 10(3), 507-520. Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Am. Statist. Ass., 85, 398-409. Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Statist. Ass., 85, 972-985. Gelman, A., and Rubin, D. B. (1992a). A single series from the Gibbs sampler provides a false sense of security. Bayesian Statistics 4, J. M Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith, pp. 625-631. Oxford: Oxford University Pess. Gelman, A., and Rubin, D. B. (1992b). Inference form iterative simulation using multiple sequences. Statist. Sci., 7, 457-472. Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattn. Anal. Mach.Intel., 6, 721-741. Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, New York. Gilks, W. R., Thomas, A. and Spiegelhalter, D. J. (1994). A language and program for complex Bayesian modeling. The Statistician, 43, 169-78 Graf, W. H. (1971). Hydraulics of sediment transport. McGraw-Hill, New York. Grass, A. J. (1971). Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech., 50(2), 233-255. Guy, H. P., Simons, D. B., and Richardson, E. V. (1966). Summary of alluvial channel data from flume experiments, 1956-1961. USGS Professional Paper, 462-I. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109. Jain, S. C. (1992). Note on lag in bedload discharge. J. Hydr. Eng., 118(6), 904-917. Johansson, A. V., and Alfredsson, P. H. (1982). On the structure of turbulent channel flow. J. Fluid Mech., 122, 295-314. Jondeau, E., and Rockinger, M. (2001). Gram-Charlier densities. Journal of Economic Dymanics & Control, 25, 1457-1483. Kalos, M. H., and Whitlock, P. A. (1986) Monte Carlo Methods, Volume I: Basics. John Wiley & Sons, New York. Kirchner, J. W., Dietrich, W. E., Iseya, F., and Ikeda, H. (1990). The variability of critical shear-stress, friction angle and grain protrusion in water-worked sediments. Sedimentology, 37, 647-672. Kreplin, H. P., and Eckelmann, H. (1979). Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids, 22(7), 1233-1239. Lanritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H. G.. (1990). Independence properties of directed Markov fields. Networks, 20, 491-505. Ligrani, P. M., and Moffat, R. J. (1986). Structure of transitionally rough and fully turbulent boundary layers. J. Fluid Mech., 162, 69-98. Ling, C. H. (1995). Criteria for incipient motion of spherical sediment particles. J. Hydr. Eng., 121(6), 472-478. Liu, J. S., Liang, F., and Wong, W. H. (1998). The use of multiple-try method and local optimization in Metropolis sampling. Technical Report. Department of Statistics, Stanford University. Luque, R. F. (1974). Erosion and transport of bed load sediment, Delft University of Technology, Delft, The Netherlands. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equations of state calculations by fast computing machine. J. Chem. Phys., 21, 1087-1091. Meyn, S. P., and Tweedie, R. L. (1993) Markov Chains and Stochastic Stability. New York: Springer-Verlag. Nakagawa, H., and Nezu, I. (1977). Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech., 80,99-128. Nelson, J. M., Shreve, R. L., McLean, S. R. and Drake, T. G. (1995). Role of near-bed turbulence structure in bed-load transport and bed form mechanics. Water Resour. Res., 31, 2071-2086. Nezu, I., and Nakagawa, H. (1993). Turbulence in Open-Channel Flow, A. A. Balkema, Rotterdam, the Netherlands. Nikora, V. I., Goring, D. G., McEwan, I., and Griffiths, G. (2001). Spatially averaged open-channel flow over rough bed. J. Hydr. Eng., 127(2), 123-133. Nikora, V. I., Goring, D. G., and Biggs, B. J. F. (2002). Some observations of the effects of micro-organisms growing on the bed of an open channel on the turbulence properties. J. Fluid Mech., 450, 317-341. Nikuradse, J. (1933). Stromungsgesetze in rauhen rohren, vdi-forsch., 361. Nummelin, E. (1984) General Irreducible Markov Chains and Non-negative Operators. Cambridge: Cambridge University Press. Paintal, A. S. (1971). A stochastic model of bed-load transport. J. Hydr. Res., 9(4), 527-554. Papanicolaou, A. N. (1999). Pickup probability for sediment entrainment. J. Hydraul. Eng., 125(7), 788. Patnaik, P. C., Vittal, N., and Pande, P. K. (1994). Lift coefficient of a stationary sphere in gradient flow. J. Hydr. Res., 32(3), 471-480. Raupach, M. R. (1981). Conditional statistics of Reynolds stress in rough- wall and smooth-wall turbulent boundary layers. J. Fluid Mech., 108, 363-382. Roberts, G. O., and Tweedie, R. L. (1994). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Research Report 94.9, Statistical Laboratory, University of Cambridge, UK. Rubin, D. B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist., 12, 1151-1172. Smith, A. F. M., and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Statist. Soc. B. Smith, R. L. (1980). A Monte Carlo procedure for the random generation of feasible solutions to mathematical programming problems. Bulletin of the TIMS/ORSA Joint National Meeting, Washington, DC, p.101. Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1994). BUGS Bayesian inference Using Gibbs Sampling, Version 0.30. Cambridge: Medical Research Council Biostatistics Unit. Spiegelhalter, D. J., Thomas, A. and Best, N. G. (1995). Computation on Bayesian graphical models. Bayesian Statistics 5, J. M Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith. Oxford: Oxford University Press, (in press). Sun, Z., and Donahue, J. (2000). Statistically derived bedload formula for any fraction of nonuniform sediment. J. Hydraul. Eng., 126(2), 105-111. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist., 22, 1701-1762. van Rijn, L. C. (1984). Sediment transport. Part I: bed load transport. J. Hydr. Eng., 110(10), 1431-1456. Wu, F. C. (2000). Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions. Water Resour. Res., 36(6), 1595-1603. Wu, F. C., and Chou, Y. J. (2003). Rolling and lifting probabilities for sediment entrainment. J. Hydr. Eng., 129(2), 110-119. Wu, F. C., and Jiang, M. R. (2006). Numerical investigation of the role of turbulent bursting in sediment entrainment. Journal of Hydraulic Engineering, ASCE, in press. Wu, F. C., and Lin, Y. C. (2002). Pickup probability of sediment under log-normal velocity distribution. J. Hydr. Eng., 128(4), 438-442. Wu, F. C., and Yang, K. H. (2004a). A stochastic partial transport model for mixed-size sediment: Application to assessment of fractional mobility. Water Resour. Res., 40(4), w04501. Wu, F. C., and Yang, K. H. (2004b). Entrainment Probabilities of mixed-size sediment incorporating near-bed coherent flow structures. J. Hydr. Eng., 130(12), 1187-1197. Wu, W., Wang, S. S. Y., and Jia, Y. (2000). Nonuniform sediment transport in alluvial rivers. J. Hydraul. Res., 38(6), 427-434.
|