跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳臻祺
研究生(外文):Chen-Chi Chen
論文名稱:馬可夫鏈蒙地卡羅法應用於河川砂礫啟動模式參數不確定性之降低
論文名稱(外文):Application of Markov Chain Monte Carlo Methodology to Reduction of Parameter Uncertainty in a Sediment Entrainment Model
指導教授:吳富春
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:馬可夫鏈蒙地卡羅法參數不確定性數值貝氏推論
外文關鍵詞:Markov Chain Monte Carloparameter uncertaintynumerical Bayesian inference
相關次數:
  • 被引用被引用:1
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討馬可夫鏈蒙地卡羅法應用於河川砂礫啟動模式參數不確定性降低之效果。馬可夫鏈蒙地卡羅法是一種具高計算效率且適用在高維度問題的數值貝氏推論,本研究建立模式參數與輸出結果之貝氏架構,並利用實測資料及馬可夫鏈蒙地卡羅數值模擬進行參數更新。研究結果顯示參數事後分布的範圍較事前分布為小,表示不確定性降低。本研究探討不同鏈數及起始值對收斂性的影響,結果顯示採用雙鏈與三鏈的事後分布差異不大;本研究亦探討不同數量資料進行更新之效應,結果顯示當資料愈多時,不確定性降低的效果愈顯著;而分別更新單一參數與多個參數時,發現後者之事後分布較不會受到模式誤差的影響,且其結果與其它經驗公式所計算的值相近。為提升河川砂礫啟動模式的計算速度,本研究採用蒙地卡羅積分取代傳統數值積分,結果顯示蒙地卡羅積分能有效縮減模式計算時間,當樣本數愈多時,誤差愈小,但計算時間較長,本研究利用妥協規劃優選最佳樣本數。
This study investigates the application of Markov Chain Monte Carlo (MCMC) methodology to reduction of parameter uncertainty in a sediment entrainment model. Markov Chain Monte Carlo methodology is efficient for numerical Bayesian inference, particularly in high-dimension problems. In this work, a Bayesian framework of model parameters and outputs has been developed for updating model parameters by Markov Chain Monte Carlo methodology using the measured data. The results show that the parameter posterior distribution has a narrower range than the prior distribution, which means the parameter uncertainty is reduced. This study investigates the effect of different chain numbers and starting values on the convergence of MCMC. Little difference was observed between the results of two chains and three chains. This study also investigates the effect of different amount of data. Results show that the more data available, the more effective by the uncertainty is reduced. It is found that the posterior obtained by multiple-parameter updating is similar to those calculated by empirical formula and less prone to model inaccuracy than the posterior by single-parameter updating. To accelerate the computation speed, this study applies Monte Carlo integration to replace the traditional numerical adaptive quadrature. Results show that Monte Carlo integration effectively reduces computation time within the tolerance. As the sample number increases, the error decreases but the run time increases. This study uses the compromise programming to optimize the sample number.
第一章 緒論 1-1
1.1 前言 1-1
1.2 文獻回顧 1-2
1.3 研究目的 1-6
第二章 理論 2-1
2.1 馬可夫鏈蒙地卡羅法 2-1
2.1.1 貝氏推論 2-1
2.1.2 蒙地卡羅積分 2-2
2.1.3 馬可夫鏈 2-2
2.1.4 Metropolis-Hastings演算法 2-3
2.1.5 鏈數與起始值之選擇 2-5
2.1.6 收斂性診斷 2-5
2.2 砂礫啟動機率模式 2-7
2.2.1 近床有序流結構 2-7
2.2.2 非均勻粒徑底床結構 2-12
2.2.3 近床流速剖面 2-13
2.2.4 啟動機率之計算 2-16

第三章 材料與方法 3-1
3.1 建立貝氏架構 3-1
3.2 事前分布與起始值 3-2
3.3 計畫分布與接受機率 3-4
3.4 收斂性診斷 3-5
第四章 結果與討論 4-1
4.1 模式驗證與抽樣誤差 4-1
4.2 參數不確定性 4-5
4.2.1 單一變數貝氏推論 4-8
4.2.1.1 不同起始值及不同鏈數驗證收斂性 4-8
4.2.1.2 輸入資料數對模擬結果之影響 4-12
4.2.1.3 樣本數對模擬結果之影響 4-19
4.2.1.4 更新參數對啟動模式結果之影響 4-20
4.2.2 多變數貝氏推論 4-20
第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-2
參考文獻 6-1
Alfredsson, P. H., Johansson, A.V., Haritonidis, J. H., and Eckelmann, H. (1988). The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids, 31, 1026-1033.
Andreopoulos, J., and Bradshaw P. (1981). Measurement of turbulence structure in the boundary layer on a rough surface. Boundary-Layer Meteorology, 20, 201-213.
Andreopoulos, J., Durst, F., Zaric, Z., and Jovanovic, J. (1984). Influence of Reynolds number on characteristics of turbulent wall boundary layers. Exp. Fluids, 2, 7-16.
Balakrishnan, S., Roy, A., Ierapetritou, M. G, Flach, G. P, and Geogrgopoulos, P. G. (2003). Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method. Water Resour. Res., 39(12), 1350.
Bandyopadhyay, P. R. (1987). Rough-wall turbulent boundary layers in the transitional regime. J. Fluid Mech., 180, 231-266.
Barndorff-Nielsen, O. (1979). Models for non-Gaussian variation with applications to turbulence. Proc. R. Soc. London, A368, 501-520.
Boneh, A., and Golan, A. (1979). Constraints’ redundancy and feasible region boundedness by random feasible point generator (RFPG). Third European Congress on Operations Research, EURO III, Amsterdam (April 9-11).
Box, G. E. P. (1980) Sampling and Bayes'' inference in scientific modelling and robustness (with disscussion). J. R. Statist. Soc A, 143, 383-430.
Bridge, J. S., and Bennett, S. J. (1992). A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resour. Res., 28(2), 337-363.
Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. J. Comput. Graphical Stat., 7, 434-455.
Brooks, S. P., and Giudici, P. (2000). Markov chain Monte Carlo convergence assessment via two-way analysis of variance. Journal of Computational and Graphical Statistics, 9(2), 266-285.
Cheng, N. S., and Chiew, Y. M. (1998). Pickup probability for sediment entrainment. J. Hydr. Eng., 124(2), 232-235.
Chen, N. S., and Chiew, Y. M. (1999). Closure to ‘Pickup probability for sediment entrainment’. J. Hydr. Eng., 125(7), 789.
Cochrane, J. L., and Zeleny, M. (1973). Multiple Criteria Decision Making. University of South Carolina Press, Columbia.
Cowles, M. K., and Carlin, B. P. (1994). Markov chain Monte Carlo convergence diagnostics: a comparative review. Technical Report 94-008, Division of Biostatistics, School of Public Health, University of Minnesota.
Di Cicca, G. M., Iuso, G., Spazzini, P. G., and Onorato, M. (2002). Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J. Fluid Mech., 467, 41-56.
Dittrich, A., Nestmann, F., and Ergenzinger, P. (1996). Ratio of lift and shear forces over rough surfaces. Coherent flow structures in open channels, P. J. Ashworth, S. J. Bennett, J. L. Best, and S. J. McLelland, eds., John Wiley, Chichester, 125-146.
Durst, F., Jovanovic, J., and Kanevce, L. (1987). Probability density distribution in turbulent wall boundary-layer flows. Turbulent Shear Flow 5, Springer-Verlag Berlin Heidelberg , 197-220.
Fischer, P. F., Leaf, G. K., and Restrepo, J. M. (2002). Forces on particles in oscillatory boundary layers. J. Fluid Mech., 468, 327-347.
Frenkiel F. N., and Klebanoff P. S. (1967). Higher-order correlations in a turbulent field. Phys. Fluids, 10(3), 507-520.
Gelfand, A. E., and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. J. Am. Statist. Ass., 85, 398-409.
Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. J. Am. Statist. Ass., 85, 972-985.
Gelman, A., and Rubin, D. B. (1992a). A single series from the Gibbs sampler provides a false sense of security. Bayesian Statistics 4, J. M Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith, pp. 625-631. Oxford: Oxford University Pess.
Gelman, A., and Rubin, D. B. (1992b). Inference form iterative simulation using multiple sequences. Statist. Sci., 7, 457-472.
Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattn. Anal. Mach.Intel., 6, 721-741.
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in Practice. Chapman & Hall, New York.
Gilks, W. R., Thomas, A. and Spiegelhalter, D. J. (1994). A language and program for complex Bayesian modeling. The Statistician, 43, 169-78
Graf, W. H. (1971). Hydraulics of sediment transport. McGraw-Hill, New York.
Grass, A. J. (1971). Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech., 50(2), 233-255.
Guy, H. P., Simons, D. B., and Richardson, E. V. (1966). Summary of alluvial channel data from flume experiments, 1956-1961. USGS Professional Paper, 462-I.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.
Jain, S. C. (1992). Note on lag in bedload discharge. J. Hydr. Eng., 118(6), 904-917.
Johansson, A. V., and Alfredsson, P. H. (1982). On the structure of turbulent channel flow. J. Fluid Mech., 122, 295-314.
Jondeau, E., and Rockinger, M. (2001). Gram-Charlier densities. Journal of Economic Dymanics & Control, 25, 1457-1483.
Kalos, M. H., and Whitlock, P. A. (1986) Monte Carlo Methods, Volume I: Basics. John Wiley & Sons, New York.
Kirchner, J. W., Dietrich, W. E., Iseya, F., and Ikeda, H. (1990). The variability of critical shear-stress, friction angle and grain protrusion in water-worked sediments. Sedimentology, 37, 647-672.
Kreplin, H. P., and Eckelmann, H. (1979). Behavior of the three fluctuating velocity components in the wall region of a turbulent channel flow. Phys. Fluids, 22(7), 1233-1239.
Lanritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H. G.. (1990). Independence properties of directed Markov fields. Networks, 20, 491-505.
Ligrani, P. M., and Moffat, R. J. (1986). Structure of transitionally rough and fully turbulent boundary layers. J. Fluid Mech., 162, 69-98.
Ling, C. H. (1995). Criteria for incipient motion of spherical sediment particles. J. Hydr. Eng., 121(6), 472-478.
Liu, J. S., Liang, F., and Wong, W. H. (1998). The use of multiple-try method and local optimization in Metropolis sampling. Technical Report. Department of Statistics, Stanford University.
Luque, R. F. (1974). Erosion and transport of bed load sediment, Delft University of Technology, Delft, The Netherlands.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equations of state calculations by fast computing machine. J. Chem. Phys., 21, 1087-1091.
Meyn, S. P., and Tweedie, R. L. (1993) Markov Chains and Stochastic Stability. New York: Springer-Verlag.
Nakagawa, H., and Nezu, I. (1977). Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech., 80,99-128.
Nelson, J. M., Shreve, R. L., McLean, S. R. and Drake, T. G. (1995). Role of near-bed turbulence structure in bed-load transport and bed form mechanics. Water Resour. Res., 31, 2071-2086.
Nezu, I., and Nakagawa, H. (1993). Turbulence in Open-Channel Flow, A. A. Balkema, Rotterdam, the Netherlands.
Nikora, V. I., Goring, D. G., McEwan, I., and Griffiths, G. (2001). Spatially averaged open-channel flow over rough bed. J. Hydr. Eng., 127(2), 123-133.
Nikora, V. I., Goring, D. G., and Biggs, B. J. F. (2002). Some observations of the effects of micro-organisms growing on the bed of an open channel on the turbulence properties. J. Fluid Mech., 450, 317-341.
Nikuradse, J. (1933). Stromungsgesetze in rauhen rohren, vdi-forsch., 361.
Nummelin, E. (1984) General Irreducible Markov Chains and Non-negative Operators. Cambridge: Cambridge University Press.
Paintal, A. S. (1971). A stochastic model of bed-load transport. J. Hydr. Res., 9(4), 527-554.
Papanicolaou, A. N. (1999). Pickup probability for sediment entrainment. J. Hydraul. Eng., 125(7), 788.
Patnaik, P. C., Vittal, N., and Pande, P. K. (1994). Lift coefficient of a stationary sphere in gradient flow. J. Hydr. Res., 32(3), 471-480.
Raupach, M. R. (1981). Conditional statistics of Reynolds stress in rough- wall and smooth-wall turbulent boundary layers. J. Fluid Mech., 108, 363-382.
Roberts, G. O., and Tweedie, R. L. (1994). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Research Report 94.9, Statistical Laboratory, University of Cambridge, UK.
Rubin, D. B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist., 12, 1151-1172.
Smith, A. F. M., and Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Statist. Soc. B.
Smith, R. L. (1980). A Monte Carlo procedure for the random generation of feasible solutions to mathematical programming problems. Bulletin of the TIMS/ORSA Joint National Meeting, Washington, DC, p.101.
Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1994). BUGS Bayesian inference Using Gibbs Sampling, Version 0.30. Cambridge: Medical Research Council Biostatistics Unit.
Spiegelhalter, D. J., Thomas, A. and Best, N. G. (1995). Computation on Bayesian graphical models. Bayesian Statistics 5, J. M Bernardo, J. Berger, A. P. Dawid and A. F. M. Smith. Oxford: Oxford University Press, (in press).
Sun, Z., and Donahue, J. (2000). Statistically derived bedload formula for any fraction of nonuniform sediment. J. Hydraul. Eng., 126(2), 105-111.
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Statist., 22, 1701-1762.
van Rijn, L. C. (1984). Sediment transport. Part I: bed load transport. J. Hydr. Eng., 110(10), 1431-1456.
Wu, F. C. (2000). Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions. Water Resour. Res., 36(6), 1595-1603.
Wu, F. C., and Chou, Y. J. (2003). Rolling and lifting probabilities for sediment entrainment. J. Hydr. Eng., 129(2), 110-119.
Wu, F. C., and Jiang, M. R. (2006). Numerical investigation of the role of turbulent bursting in sediment entrainment. Journal of Hydraulic Engineering, ASCE, in press.
Wu, F. C., and Lin, Y. C. (2002). Pickup probability of sediment under log-normal velocity distribution. J. Hydr. Eng., 128(4), 438-442.
Wu, F. C., and Yang, K. H. (2004a). A stochastic partial transport model for mixed-size sediment: Application to assessment of fractional mobility. Water Resour. Res., 40(4), w04501.
Wu, F. C., and Yang, K. H. (2004b). Entrainment Probabilities of mixed-size sediment incorporating near-bed coherent flow structures. J. Hydr. Eng., 130(12), 1187-1197.
Wu, W., Wang, S. S. Y., and Jia, Y. (2000). Nonuniform sediment transport in alluvial rivers. J. Hydraul. Res., 38(6), 427-434.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top