跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/14 05:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江衍銘
研究生(外文):Yen-Ming Chiang
論文名稱:類神經網路於水文氣象-以雷達及數值天氣預報資訊建構洪水預測
論文名稱(外文):Artificial Neural Networks in Hydrometeorology-Flood Forecasting from Radar and Numerical Weather Prediction Information
指導教授:張斐章張斐章引用關係
指導教授(外文):Fi-John Chang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:119
中文關鍵詞:類神經網路多階段洪水預測雷達數值天氣預報序列式傳遞架構定量降雨預報融合程序
外文關鍵詞:artificial neural networkmulti-step-ahead flood forecastingradarnumerical weather predictionserial-propagated structurequantitative precipitation forecastingmerging procedure
相關次數:
  • 被引用被引用:4
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文的主要目的為利用雷達及數值天氣預報之訊息整合於類神經網路以有效地建構多階段洪水預測模式。研究藉由類神經網路於降雨-逕流模擬過程之精確性及適用性,針對三項研究主題分別進行探討。首先,應用四組不同數目及變異性之資料分別訓練靜態及動態網路,進而評估其優劣,評比之成果指出,動態網路之輸出誤差普遍來說低於靜態網路,而靜態網路僅能在資料充足且變異性豐富的條件下才可有精確且穩定之預測。
第二研究主題著眼於網路架構之觀點,經分析評估三種不同多階段預測模式之有效性及穩定性,結果顯示運用一序列式傳遞之類神經網路架構可有效提升模式於多階段預測之準確性,此一技巧不僅可提供網路於搜尋過程獲得較佳解之可能性外,更能增加模式預測之可靠性。上述兩項研究成果皆有助於多階段洪水預測模式之建立;為進一步提升模式預測之階段,雨量預報資訊實為不可或缺之訊息,因此,本研究第三項主題為以融合程序有效結合雷達觀測及數值天氣預報模式所繁衍之預報雨量,提高定量降雨預報產品之精確度。
由模式觀點及資料觀點進行評比,可得下述之結論;在定量降雨預報上,本文所提之融合程序驗證其可有效地結合兩組不同之雨量預報資訊並提高未來1至6小時預報雨量之精確度。在多階段洪水預測上,一相當重要之發現為未來1至3小時的水位流量預測,對預報雨量資訊的提供影響有限,洪水預報主要是受前階段之水位流量訊息所影響;反之,模式於4至6小時之預測則高度仰賴雨量預報資訊。總結來說,此研究成果強烈地驗證序列式傳遞架構具有提供準確且穩定之多階段洪水預測能力,而本文所提之融合雨量預報資訊則可進一步提升模式於多階段洪水預測之精確度。
The major purpose of this dissertation is to effectively construct artificial neural networks-based multi-step-ahead flood forecasting using radar and numerical weather prediction information. To achieve this goal, three investigations by using neural networks for rainfall estimation and/or rainfall-runoff process simulation have been performed to explore their accuracy and applicability. The first topic investigates the model forecasts through static and dynamic neural networks by using four sets of training data which consist of different sample sizes and contents. Performance of these two types of networks suggest that the dynamic neural network generally could produce better and more stable forecasts than the static neural network, and the static model could produce satisfactory results only when sufficient and adequate training data are provided.
The second topic focuses on the evaluation of effectiveness and stability of three neural networks-based multi-step-ahead forecasts in terms of model structures. The results indicate that a neural network with a serial-propagated structure can help in improving the accuracy of forecasts. This concept not only provides a possibility of finding better solution for multi-step-ahead forecasts but enhances the predictive reliability. Results from above two studies are further utilized in the third topic which is to construct a precise and feasible multi-step-ahead flood forecasting. For better multi-step-ahead flood forecasting, there is a necessity to conduct the predicted meteorological information. Therefore, an improved quantitative precipitation forecasting is obtained from a merging procedure that combines radar-derived predictions and precipitation forecasts extracted from a numerical weather prediction model.
The comparison of multi-step-ahead flood forecasting derived from the serial- propagated structure and the merged precipitation prediction is made by estimating the timing and the percent error of a predicted peak flow relate to observed peak flow and the corresponding improvement. Based on the comprehensive comparison, the merging procedure successfully demonstrates the capability of efficiently combining the information from both rainfall sources and improves the accuracy of 1-6 h precipitation predictions. For multi-step-ahead flood forecasting, an important finding is the hydrologic responses seem not sensitive to the precipitation predictions in short lead times (in our case 1 to 3 hours) but dominate by previous runoff information, whereas the model forecasts are highly dependent on predicted precipitation information for lead time greater than 3 hours. Overall, the results strongly demonstrate that accurate and stable multi-step-ahead flood forecasting can be obtained from a serial-propagated structure and enhanced by the proposed precipitation predictions.
Abstract i
中文摘要 iii
Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Structure of the Dissertation 3
Chapter 2 Comparison of Static and Dynamic Neural Networks 5
2.1 Artificial Neural Networks 5
2.2 Static-Feedforward and Dynamic-Feedback Neural Networks 7
2.2.1 Feedforward architecture 7
2.2.2 Feedback architecture 9
2.3 Learning Algorithms 10
2.4 Application 16
2.4.1 Study area 16
2.4.2 Determining an ANN structure 17
2.4.3 Selecting the best static-feedforward neural network structure 20
2.5 Results and Discussion 22
2.6 Summary 27
Chapter 3 Investigation on the Structure for Multi-Step-Ahead Forecasts 29
3.1 Overview of Flood Forecasting 29
3.2 Methodologies for Multi-Step-Ahead Forecasts 31
3.2.1 Importance of multi-step-ahead forecasts 31
3.2.2 The architectures of ANN-based multi-step-ahead forecasts 32
3.3 Application 35
3.3.1 Study area 35
3.3.2 Description of data and ANN model set up 36
3.4 Results and Discussion 40
3.4.1 Experiment I 40
3.4.2 Experiment II 45
3.5 Summary 49
Chapter 4 Multi-Step-Ahead Flood Forecasting 51
4.1 Quantitative Precipitation Forecasting 51
4.1.1 Applications of radar information in QPF 54
4.1.2 Numerical weather prediction model 56
4.2 QPF from Radar and NWP Information 58
4.2.1 Dataset 59
4.2.2 Description of neural network-based QPF models 65
4.3 QPFs for MSA Flood Forecasting 69
4.3.1 QPF by merging radar and NWP precipitation forecasts 69
4.3.2 RNN-based hydrological models 71
4.3.3 Statistics for model assessment 75
4.4 Results of QPF 77
4.5 Results of MSA Flood Forecasting 83
4.6 Summary 99
Chapter 5 Concluding Remarks 101
References 105
Appendix A Curriculum Vitae 113
Appendix B 作者簡歷 117
Abrahart, R.J. and L. See, 2000. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14: 2157-2172.
Antolik, M.S., 2000. An overview of the National Weather Service’s centralized statistical quantitative precipitation forecasts. Journal of Hydrology 239: 306-337.
Applequist, S., G. Garhs, and R. Pfeffer, 2002. Comparisons of methodologies for probabilistic quantitative precipitation forecasting. Weather and Forecasting 17: 783-799.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000a. Artificial neural networks in hydrology I: Preliminary concepts. Journal of Hydrologic Engineering 5(2): 115-123.
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000b. Artificial neural networks in hydrology II: Hydrologic applications. Journal of Hydrologic Engineering 5(2): 124-137.
Atiya, A.F., S.M. El-Shoura, S.I. Shaheen, and M.S. El-Sherif, 1999. A comparison between neural-network forecasting techniques-case study: river flow forecasting. IEEE Trans. on Neural Networks 10(2): 402-409.
Atlas, D., R.C. Srivastava, and R.S. Sekhon, 1973. Doppler radar characteristics of precipitation at vertical incidence. Review of Geophysics 11: 1-35.
Baltas, E. and M. Mimikou, 1994. Short-term rainfall forecasting using radar data. Water Resources Development 10: 67-78.
Baratti, R., B. Cannas, A. Fanni, M. Pintus, G. M. Sechi, and N. Toreno, 2003. River flow forecast for reservoir management through neural networks. Neurocomputing 55(3-4): 421-437.
Chang, F.J., L.C. Chang, and H.L. Huang, 2002. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16(13): 2577-2588.
Chang, F.J. and Y.C. Chen, 2001. A counterpropagation fuzzy-neural network modeling approach to real time stream flow prediction. Journal of Hydrology 245: 153-164.
Chang, F.J. and Y.C. Chen, 2003. Estuary water-stage forecasting by using Radial Basis Function neural network. Journal of Hydrology 270: 158-166.
Chang, F.J., Y.M. Chiang, and L.C. Chang, 2007. Multi-step-ahead flood forecasting by neural networks. Hydrological Sciences Journal 52(1): 114-130.
Chang F.J. and Y.T. Chang, 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advanced in Water Resources 29: 1-10.
Chang, F.J. and Y.Y. Hwang, 1999. A Self-organization algorithm for real-time flood forecast. Hydrological Processes 13(2): 123-138.
Chang L.C. and F.J. Chang, 2001. Intelligent control for modeling of real time reservoir operation. Hydrological Processes 15: 1621-1634.
Chang, L.C. and F.J. Chang, 2002. An efficient parallel algorithm for LISSOM neural network. Parallel Computing 28: 1611-1633.
Chang, L.C., F.J. Chang, and Y.M. Chiang, 2004. A two-step ahead recurrent neural network for streamflow forecasting. Hydrological Processes 18: 81-92.
Chang Y.T., L.C. Chang, and F.J. Chang, 2005. Intelligent control for modeling of real time reservoir operation: Part II ANN with operating curves. Hydrological Processes 19: 1431-1444.
Chiang, Y.M., F.J. Chang, B.J.D. Jou, and P.F. Lin, 2007. Dynamic artificial neural network for real-time precipitation estimation and forecasting from radar observations. Journal of Hydrology (in press)
Chiang, Y.M., L.C. Chang, and F.J. Chang, 2004. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290: 297-311.
Ciach, G.J. and W.F. Krajewski, 1999. Radar-rain gauge comparisons under observational uncertainties. Journal of Applied Meteorology 38: 1519-1525.
Coulibaly, P., 2003. Impact of meteorological predictions on real-time spring flow forecasting. Hydrological Processes 17:3791-3801.
Coulibaly, P., F. Anctil, and B. Bobee, 2000. Neural network-based long-term hydropower forecasting system. Computer-Aided Civil and Infrastructure Engineering 15: 355-364.
Coulibaly, P., F. Anctil, and B. Bobee, 2001. Multivariate reservoir inflow forecasting using temporal neural networks. Journal of Hydrologic Engineering 6(5): 367-376.
Dawson, C.W. and R.L. Wilby, 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 43(1): 47-67.
Dawson, C.W. and R.L. Wilby, 2001. Hydrological modeling using artificial neural networks. Progress in Physical Geography 25(1): 80-108.
Droegemeier, K. and Coauthors, 2000. Hydrological aspects of weather prediction and flood warnings. Bulletin of the American Meteorological Society 81: 2665-2680.
Duan, Q., S. Sorooshian, and V.K. Gupta, 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4): 1015-1031.
Dumais, R.E. and K.C. Young, 1995. Using a self-learning algorithm for single-station quantitative precipitation forecasting in Germany. Weather and Forecasting 10: 105-113.
Elman, J.L., 1990. Finding structure in time. Cobnitive Science 14: 179-211.
French, M.N., W.F. Krajewski, and R.R. Cuykendall, 1992. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137: 1-31.
Ganguly A.R. and R.L. Bras, 2003. Distributed quantitative precipitation forecasting Using information from radar and numerical weather prediction models. Journal of Hydrometeorology 4: 1168-1180.
Gao, X.Z., S.J. Ovaska, and A.V. Vasilakos, 2002. Temporal difference method-based multi-step-ahead prediction of long term deep fading in mobile networks. Computer Communications 25: 1477-1486.
Germann, U. and I. Zawadzki, 2002. Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Monthly Weather Review 130: 2859-2873.
Glahn, H.R., and D.L. Lowry, 1972. The use of Model Output Statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology 11: 1203-1211.
Grayson, R.B., I.D. Moore, and T.A. McMahon, 1992. Physically based hydrologic modeling-2, is the concept realistic. Water Resources Research 28(10): 2659-2666.
Grecu, M. and W.F. Krajewski, 2000. A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. Journal of Hydrology 239: 69-84.
Grimes, D.I.F., E. Coppola, M. Verdecchia, and G. Visconti, 2003. A neural network approach to real-time rainfall estimation for Africa using satellite data. Journal of Hydrometeorology 4: 1119-1133.
Golding B.W., 2000. Quantitative precipitation forecasting in the UK. Journal of Hydrology 239: 286-305.
Govindaraju, R.S. and A.R. Rao, 2000. Artificial Neural Networks in Hydrology. Kluwer Academic Publishers.
Hall, T., 1999. Precipitation forecasting using a neural network. Weather and Forecasting 14: 338-345.
Ham, F.M. and I. Kostanic, 2001. Principles of neurocomputing for science & engineering. McGraw-Hill. New York.
Han, M., J.H. Xi, S.G. Xu, and F.L. Yin, 2004. Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Transactions on Signal Processing 52: 3409-3416.
Haykin, S., 1999. Neural Network: A comprehensive foundation. 2nd ed. Prentice Hall.
Hong, Y., Y.M. Chiang, Y. Liu, K.L. Hsu, and S. Sorooshian, 2006. Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. International Journal of Remote Sensing (in press)
Hopfield, J.J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8): 2254-2258.
Hsu, K.L., H.V. Gupta, and S. Sorooshian, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31: 2517-2530.
Hsu, K.L., H.V. Gupta, X.G. Gao, and S. Sorooshian, 1999. Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resources Research 35(5): 1605-1618.
Hsu, K.L., H.V. Gupta, X.G. Gao, S. Sorooshian, and B. Imam, 2002. Self-organizing linear output (SOLO): An artificial neural network suitable for hydrologic modeling and analysis. Water Resources Research 38(12): 1302, doi:10.1029/ 2001WR000795.
Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36: 1176-1190.
Huang, S.J. and R.J. Lian, 2000. A combination of fuzzy logic and neural network controller for multiple-input multiple-output systems. International Journal of Systems Science 31: 343-357.
Hydrological Engineering Center, 1990. HEC-1 Flood Hydrograph Package. Program Users Manual. U. S. Army Crops of Engineers: Davis, C.A.
Imrie, C.E., S. Durucan, and A. Korre, 2000. River flow prediction using artificial neural network: generalisation beyond the calibration range. Journal of Hydrology 233: 138-153.
Johnson, J.T., P.L. MacKeen, A. Witt, E.D. Mitchell, G.J. Stumpf, M.D. Eilts, and K.W. Thomas, 1993. The storm cell identificationand tracking algorithm: an enhanced WSR-88D algorithm. Weather and Forecasting 13: 263-276.
Jorgensen, D.P. and P.T. Willis, 1982. A Z-R relationship for hurricianes. Journal of Applied Meteorology 21: 356-366.
Karunanithi, N., W.J. Grenney, and D. Whitley, 1994. Neural network for river flow prediction. Journal of Computing in Civil Engineering 8: 201-220.
Kitzmiller, D.H., 1996. One-hour forecasts of radar-estimated rainfall by an extrapolative-statistical method. TDL Office Note 96-1, National Weather Service, NOAA, US Department of Commerce, 26 pp.
Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43: 59-69.
Koizumi, K., 1999. An objective method to modify numerical model forecasts with newly given weather data using an artificial neural network. Weather and Forecasting 14: 109-118.
Kuligowski R.J. and A. Barros, 1998. Localized precipitation forecasts from a numerical weather prediction model using artificial neural networks. Weather and forecasting 13: 1194-1204.
Kuligowski R.J. and A. Barros, 2001. Combined IR-microwave satellite retrieval of temperature and dewpoint profiles using artificial neural networks. Journal of Applied Meteorology 40: 2051-2067.
Lallahem, S. and J. Mania, 2003. Evaluation and forecasting of daily groundwater outflow in a small chalky watershed, Hydrological Processes 17: 1561-1577.
Luk, K.C., J.E. Ball, and A. Sharma, 2000. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227: 56-65.
Maier, H.R. and G.C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modeling and Software 15(1): 101-124.
Marshall, J.M. and W.M.K. Palmer, 1948. The distribution of raindrops with size. Journal of Applied Meteorology 5: 165-166.
McCuen, R.H., 1985. Statistical methods for engineers. Prentice-Hall, Englewood Cliffs, N.J.
McCulloch, W.S. and W. Pitts, 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: 115-133.
Mecklenburg, S., J. Joss, and W. Schmid, 2000. Improving the nowcasting of precipitation in an Alpine region with an enhancedradar echo tracking algorithm. Journal of Hydrology 239: 46-68.
Miller, L.J., C.G. Mohr, and A. Weinheimer, 1986. The simple rectification in Cartesian space of folded radial velocities from Doppler radar sampling. Journal of Atmospheric and Oceanic Technology 1: 162-174.
Mimikou, M.A. and E.A. Baltas, 1996. Flood forecasting based on radar rainfall measurements. Journal of Water Resources Planning and Management 122: 151-156.
Minns, A.W. and M.J. Hall, 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3): 399-417.
Morin, E., W.F. Krajewski, D.C. Goodrich, X. Gao, and S. Sorooshian, 2003. Estimating rainfall intensities from weather radar data: the scale-dependency problem. Journal of Hydrometeorology 4: 782-797.
Nash, J.E. and J.V. Sutcliffe, 1970. River flow forecasting through conceptual maodels, part I - a discussion of principles. Journal of Hydrology 10: 282-290.
Parlos, A.G., O.T. Rais, and A.F. Atiya, 2000. Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Networks 13: 765-786.
Pierce, C.E., C.G. Collier, P.J. Hardaker, and C.M. Haggett, 2000. GANDOLF: A system for generating automated nowcasts of convective precipitation. Meteorological Application 8: 341-360.
Powell, M.J.D., 1985. Radial basis functions for multivariable interpolation: A review. IMA Conference on Algorithms for the Approximation of Functions and Data, 143-167, RMCS, Shrivenham, England.
Ranjithan, S., J.W. Eheart, and J.H. Garrett Jr, 1993. Neural network-based screening for groundwater reclamation under uncertainty. Water Resources Research 29(3): 563-574.
Rogers, R.R. and M.K. Yau, 1989. A short course in cloud physics. Pergamon, 293 pp.
Rumelhart, D.E., G.E. Hinton, and R.J. Williams, 1986. Learning internal representations by error propagation. Parallel Distributed Processing 1: 318-362.
Sajikumar, N. and B.S. Thandaveswara, 1999. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216: 32-55.
Salas, J.D., J.W. Delleur, V. Yevjevich and W.L. Lane, 1985. Applied modeling of hydrologic time series. Water Resources Publications.
Sauvageot, H., 1992. Radar Meteorology. Artech House, 366 pp.
Schenker, B. and M. Agarwal, 1995. Long-range prediction for poorly-known systems. International Journal of Control 62: 227-238.
Seibert, J., 2001. On the need for benchmarks in hydrological modeling. Hydrological Processes 15: 1063-1064.
Selvaraj, R., P.B. Deshpande, S.S. Tambe, and B.D. Kulkarni, 1995. Neural networks for the identification of MSF desalination plants. Desalination 101: 185-193.
Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modeling. Journal of Hydrology 199: 272-294.
Sivakumar, B., 2005. Hydrologic modeling and forecasting: role of thresholds. Environmental Modeling & Software 20(5): 515-519.
Sokol Z., 2006. Nowcasting of 1-h precipitation using radar and NWP data. Journal of Hydrology 328: 200-211.
Sorooshian, S., K.L. Hsu, X. Gao, H.V. Gupta, B. Imam, and D. Braithwaite, 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rain. Bulletin of the American Meteorological Society 81: 2035-2046.
Su, H.T., T.J. McAvoy, and P. Werbos, 1992. Long-term prediction of chemical processes using recurrent neural networks: A parallel training approach. Industrial Applications of Chemical Engineering Research 31: 1338-1352.
Tokar, A.S. and P.A. Johnson, 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4(3): 232-239.
Toth, E., A. Brath, and A. Montanari, 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239: 132-147.
Trafalis, T.B., M.B. Richman, A. White, and B. Santosa, 2002. Data mining techniques for improved WSR-88D rainfall estimation. Computers & Industrial Engineering 43: 775-786.
Xiao, R. and V. Chandrasekar, 1997. Development of a neural network based algorithm for rainfall estimation from radar observations. IEEE Transactions on Geoscience and Remote Sensing 35: 160-171.
Zealand, C.M., D.H. Burn, and S.P. Simonovic, 1999. Short term stream flow forecasting using artificial neural networks. Journal of Hydrology 214: 32-48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 毛樹仁、吳坤霖,2004,〈台灣非政府組織於政府外交事務的角色與弁遄r,《國家政策季刊》,3(1):175-200。
2. 朱雲漢,2001,〈國民黨於台灣的民主轉型〉,《二十一世紀》,65:4-13。
3. 吳文程,1995,〈台灣政治轉型理論的分析架構的探討〉,《東吳政治學報》,4:135-183。
4. 宋學文,2001,〈全球化與全球治理對我國公共政策研究之影響:並兼論對兩岸關係研究之意涵〉,《中國大陸研究》,44(4):1-31。
5. 宋學文,2004,〈全球化與全球治理之互動之模型分析:以人文與社會科學之「科際整合」為例〉,《理論與政策》,17(3):59-75。
6. 宋興洲,1994,〈民主化及其困境〉,《理論與政策》,8(4):15-29。
7. 李酉潭、張孝評,〈台灣民主化分析—Rustow與Huntington模式的檢驗〉,《中山人文社會科學期刊》。
8. 杜蘅之,1980,〈從國際人權法說到美國人權外交〉,《中山學術文化集刊》,26:273-282。
9. 周陽山,1988,〈民主化、自由化與威權轉型—國際經驗的比較〉,《中山學術論叢》,8:79-93。
10. 周陽山,1990,〈美國現代化理論的重估〉,《美國月刊》,5(4):44-53。
11. 周陽山,1991,〈解放、自由化、民主化與制度化—拉丁美洲經驗的反省〉,《 政治科學論叢》,2:93-103。
12. 邱稔壤,1999,〈皮諾契時代智利之人權爭議及其發展〉,《問題與研究》,38(4):31-53。
13. 張國聖,2003,〈現代人權的發展源流與意涵〉,《通識研究集刊》,4:1-18。
14. 陳文賢,1999,〈後冷戰時代國家主權概念的發展〉,《美歐季刊》,13(2):137-159。
15. 楊永明,1997,〈聯合國維持和平行動之發展:冷戰後國際安全的轉變〉,《問題與研究》,36(11):23-40。