跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王聖瑋
研究生(外文):Sheng-Wei Wang
論文名稱:台灣西南沿海地區地層環境中砷之來源與釋出機制
論文名稱(外文):Source and Release Mechanisms of Arsenic in Sedimentary Basin of the Coastal Areas of Southwestern Taiwan
指導教授:劉振宇劉振宇引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:90
中文關鍵詞:地下水沉積環境來源釋出機制鐵還原菌
外文關鍵詞:ArsenicGroundwaterSedimentary basinSourcesRelease mechanismsIron-reducing bacteria
相關次數:
  • 被引用被引用:10
  • 點閱點閱:923
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
台灣西南沿海地區之嘉南平原早在1960年代便曾出現大規模烏腳病疫情,經研究證實其與深層地下水中之無機砷有關。此外,自1992至2005年,於緊鄰嘉南平原之濁水溪沖積扇南翼淺層地下水中,亦檢測發現含有高砷濃度,目前當地居民雖已不再直接飲用含砷地下水,但仍大量抽取地下水用以灌溉、養殖、公共、民生給水等多項用水標的,此舉可能造成砷透過食物鏈累積,進而對人體造成健康危害,故本研究之目的為探討此區高砷地下水之來源與其釋出機制。本研究針對濁水溪沖積扇南端之13口地質鑽探井,分析地層岩心之砷含量分布,並比對現有之水文地質資料,建立地層中砷存在與地質年代及地層地化環境之相關性,探討地層環境中砷可能之來源。進而針對嘉南平原之33個地下水觀測站水質資料,利用因子分析法歸納影響水質結構之主要因子,並結合地下水氧化還原狀態之判定及地球化學模式之計算,與濁水溪沖積扇之結果比較,進而推測此兩區域之地下水砷可能釋出機制之異同。最後利用高砷含量之地下水培養與砷釋出相關之鐵還原菌,將其添加至合成之含砷氫氧化鐵之批次實驗中,隨時間量測物種砷與二價鐵之濃度變化,藉以歸納砷於地層環境中之釋出過程與物種變化,及鐵還原菌於此循環過程中所扮演之角色。
由濁水溪沖積扇南翼之地質岩心分析結果顯示其總砷含量較一般土壤高,且海相層之地層岩心總砷濃度大多較陸相層高,並呈現由西向東遞減之趨勢。再者,不論出現高砷含量之深淺,其岩心之地質年代大多約介於7,000-9,000年前間之上部海相層,且主要為泥質地層,而由阻水層岩心與含水層岩心總砷含量分別與地下水總砷含量進行迴歸分析之結果中,更可發現地下水中之砷含量不僅與岩心總砷含量有關,地下水中高砷含量之來源更可能為阻水層岩心之砷含量,由此推測距今最近一次之全新世冰河時期,其海進海退造成大量的砷累積於潟湖相之沉積層中。濁水溪沖積扇與嘉南平原地下水之主要特性皆為海水導致之鹽化與高砷污染,但此兩區地下水氧化還原狀態之空間分部則出現相反之情形,主要為水文地質條件之差異所致。此兩區大量抽取地下水不僅可能造成地下水鹽化,亦可能導致地下水氧化還原狀態改變,進而促使地層中含砷之鐵氧化物的還原與溶解,導致砷釋出於地下水中。此外由批次實驗之結果可發現,固相之氫氧化鐵與液相之五價砷皆受鐵還原菌影響而呈現還原反應,且於含砷氫氧化鐵之實驗組別中得知,大分子有機碳易與五價砷競爭氫氧化鐵表面之吸附位置,而導致五價砷脫附至水溶液中,而小分子有機碳則較利於鐵還原菌作用於氫氧化鐵之還原溶解,進而減少五價砷之吸附表面而使五價砷釋放至水溶液中。當氫氧化鐵之還原溶解達平衡時,水溶液中已釋出之五價砷進而成為鐵還原菌之電子接受者,故存在於地層環境中之鐵還原菌不僅影響砷釋出之地下水中,更可能改變水中物種砷之價態。本研究提出台灣西南沿海高砷地化環境之概念模式,有助於吾人了解砷在地下水系統中之釋出與遷移,及在整體地質環境中之宿命及循環過程。
High arsenic (As) contents in groundwater were found in two neighboring catchments of southwestern Taiwan- the southern Choushui river alluvial fan and the Chianan plain. To investigate the sources of As in groundwater, a total of 655 geological core samples from 13 drilling wells situated at the southern Choushui river alluvial fan of Taiwan were collected and analyzed. High As contents were found primarily in aquitards, to a maximum of 590 mg/kg. The contents were correlated with the locations of the marine sequences. Additionally, strong correlations among the As concentrations of core samples, the clay, and the geological age of the Holocene transgression were identified. Most of the As in groundwater originated from the aquitard of the marine sequence. The high As content in marine formations with high clay contents may be attributable to the bioaccumulation of As in the sea organisms, which accrued and were deposited in the formations. A preliminary geogenic model of the origin of the high As concentration in the shallow sedimentary basin of the Choushui river alluvial fan of Taiwan is proposed. Furthermore, the groundwater quality, the redox potential and the As distribution of the Chianan plain were characterized using factor analysis, redox zoning and a geochemical program, PHREEQC. The results were compared with those of the southern Choushui river alluvial fan to allude the possible release mechanisms of As in groundwater of the southwestern Taiwan. Factors 1 and 2 determined by the factor analysis of the groundwater in the Chianan plain - the salinization factor and the As pollutant factor - are similar to those in the southern Choushui river alluvial fan. However, the spatial distribution of reductive tendency in the Chianan plain is different from that in the Choushui river alluvial fan, yielding spatially distinct hydrogeochemical environments in these two neighboring areas. The reduction potential in the Chianan plain is stronger than that in the Choushui river alluvial fan. The difference of the reduction potentials between these two vicinal areas affects the distribution of As concentrations in groundwater. The reductive dissolution of As-rich iron oxyhydroxide is postulated to be the major mechanism of the release of As to the groundwater in the Chianan plain and the Choushui river alluvial fan of Taiwan. The release mechanism is generally driven by reducing bacteria. Experiments approach was carried out by coupled synthetic As-contained amorphous iron oxide (HFO) and inoculation of iron-reducing bacteria (IRB) to evaluate the contribution of IRB on the mobilization and transformation of As. The results of respective HFO and As5+ reducing experiments show that both of the reduction reactions are promoted by IRB. However, the rate and extent of As5+ reduction are similar with different treatments of organic substrates. In As-contained HFO reducing experiment, both the IRB and the competition of organic carbon play important roles on As desorption and mobilization. Sequentially, aqueous As5+ becomes an electron acceptor after that the solid phase of ferric iron has been reduced, but the conversion of As5+ to As3+ were affected by different treatments of organic substrates. Hence, Fe-related reducing bacteria may be capable of reducing aqueous As5+ after the reduction of iron minerals. The working hypothesis model of As biogeochemical cycling proposed by this study sets up the framework for investigation of the fate and transport of As in the groundwater of the southwestern Taiwan.
Contents
Abstract i
摘要 iv
Contents vi
List of Tables ix
List of Figures x
1. Introduction 1
2. Literature reviews 5
2.1 Distribution of arsenic in sedimentary basin 5
2.2 Possible release mechanisms of arsenic in groundwater 6
3. Study area 9
4. Materials and methods 13
4.1 Core samples of the southern Choushui river alluvial fan 13
4.2 Groundwater quality of the southwestern Taiwan 15
4.2.1 Sampling and analyses 15
4.2.2 Factor analysis and redox zoning 16
4.2.3 Geochemical calculations 23
4.3 Batch experiments of arsenic mobilization and transformation 25
4.3.1 Iron-reducing bacteria enrichment 25
4.3.2 Preparation of arsenic-adsorbed amorphous iron oxide……………..28
4.3.3 Incubation experiments 28
4.3.4 Analyses of arsenic species and ferrous iron 29
5. Results and discussion 30
5.1 Source of arsenic in groundwater of southern Choushui river alluvial fan 30
5.1.1 Arsenic distribution of the sedimentary basin 30
5.1.2 Correlations among arsenic contents, sediment material, and geological ages of core samples 34
5.1.3 Source of arsenic in groundwater 40
5.2 Possible mechanisms for arsenic release to groundwater 43
5.2.1 Factor analysis of the Chianan plain 43
5.2.2 Redox zonation of the Chianan plain 50
5.2.3 Geochemical calculation 53
5.2.4 Mechanisms of arsenic release to groundwater 57
5.3 Batch experiments of arsenic mobilization and transformation 61
5.3.1 Iron and arsenic reduction experiments 61
5.3.2 Contribution of iron-reducing bacteria to arsenic release in aqueous phase 65
5.3.3 Effect of iron-reducing bacteria on the transformation of mobilized arsenic 68
6. Conclusions and suggestions 71
6.1 Conclusions 71
6.2 Suggestions 73
References………………………………………………………………………….. 75
References
Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S., Bhowmik A., 1999. Arsenic poisoning in the Gangs delta. Nature 401, 545.
Agricultural Engineering Research Center, 1999. Development of the estimation model for rational use of agricultural water. Res. Rep. AERC-99-RR-11.
Ahmann, D., Krumholz, L.R., Hemond, H.F., Lovley, D.R.,Morel, F.M.M., 1997. Microbial mobilization of arsenic from sediments of the aberjona watershed. Environ. Sci. Technol. 31, 2923-2930.
Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., Ohfuji, H., Anawar, H.M., Akai, K., 2004. Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Appl. Geochem. 19, 215-230.
Alam, M.K., Hasan, A.K.M.S., Khan, M.R., Whitney, J.W., 1990. Geological map of Bangladesh, scale 1:1,000,000. Geol. Survey of Bangladesh, Dhaka.
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S., Kato. K., 2003. Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J. Geochem. Explor. 77, 109-131.
Anawar, H.M., Akai, J., Sakugawa, H., 2004. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54, 753-762.
APHA, 1998. Standard methods for the examination of water and water waste, 20th ed. American Public Health Assoc., Washington, DC, 413-426.
Appelo, C.A.J., Van der Weiden, M.J.J., Tournassat, C., Charlet, L., 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36, 3096-3103.
Baedecker, M.J., and Back, W., 1979a. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J. Hydrol. 43, 393-414.
Baedecker, M.J., and Back, W., 1979b. Hydrogeological processes and chemical reactions at a landfill. Ground Water 17, 429-437.
Bagla, P., and Kaiser, J., 1996. Epidemiology—India’s spreading health crisis draws global arsenic experts. Science 274, 174–175.
Bauer, M., and Blodau, C., 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soil and sediments. Sci. Total Environ. 354, 179-190.
Bhattacharya, P., Chatterjee, D., Jacks, G., 1997. Occurrence of arsenic contaminated groundwater in alluvial aquifers from Delta Plains, eastern India: options for safe drinking water supply. Internat. J. Water Resour. Devel. 13, 79-92.
Bhattacharya, P., Welch, A.H., Ahmed, K.M., Jacks, G., Naidu, R., 2004. Arsenic in groundwater of sedimentary aquifers. Appl. Geochem. 19, 163-167.
Bi, R.L., 1994. A preliminary study on the arsenic enrichment of groundwater in Chianan area, Taiwan. Masters thesis, Department of Geoscience, National Taiwan University, Taipei, Taiwan, ROC.
Bone, S.E., Gonneea, M.E., Charette, M.A., 2006. Geochemical cycling of arsenic in a coastal aquifer. Environ. Sci. Technol. 40, 3273-3278.
Bose, P., and Sharma, A., 2002. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Resour. 36, 4916–4926.
Campbell, K.M., Malasarn, D., Saltikov, C.W., Newman, D.K., Hering, J.G., 2006. Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Environ. Sci. Technol. 40, 5950-5955.
Central Geological Survey, 1999. Project of groundwater monitoring network in Taiwan during first stage-research report of Chou-Shui River alluvial fan, Taiwan. Taiwan Water Resour. Bureau, Taipei.
Cervantes, C., Ji, G., Ramirez, J.L., Silver, S., 1994. Resistance to arsenic compounds in microorganisms. Fems Microbiol. Rev. 15, 355-367.
Chapelle, F.H., McMahon, P.B., Dubrovsky, N.M., Fujii, R.F., Oaksford, E.T., Vroblesky, D.A., 1995. Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour. Res. 31, 359-371.
Chapelle, F.H., Zelibor, J.L.Jr., Grimes, D.J., Knobel, L.L., 1987. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater. Water Resour. Res. 23, 1625-1632.
Chatterjee, A.D., Das, D., Mandal, B.K., Chowdhury, T.R., Samanta, G., Chakraborty, D., 1995. Arsenic in groundwater in 6 districts of West Bengal, India—the biggest arsenic calamity in the world. A. Arsenic species in drinking water and urine of the affected people. Analyst 120, 643–650.
Chen, C.C., 2003. Accumulation and release of arsenic in sediments from Hsindong and Jinhu in Chianan Plain, Taiwan. Masters thesis, Department of Geoscience, National Taiwan University, Taipei, Taiwan, ROC.
Chen, C.J., and Wang, C.J., 1990. Ecological correlation between arsenic levels in well water and aged-adjusted mortality from malignant neoplasms. Cancer Res. 50, 5470-5474.
Chen, C.J., Hsueh, Y.M., Lai, M.S., Shyu, M.P., Chen, S.Y., Wu, M.M., Kuo, T.L., Tai, T.Y., 1995. Increased prevalence of hypertension and long-term arsenic exposure. Hypertension 25, 53-60.
Chen, S.L., Dzeng, S.R., Yang, M.H., Chiu, K.H., Shieh, G.M., Wai C.M., 1994. Arsenic species in groundwaters of the blackfoot disease area, Taiwan. Environ. Sci. Technol. 28, 877–881.
Chen, W.F., and Liu, T.K., 2003. Dissolved oxygen and nitrate of groundwater in Choushui Fan-Delta, western Taiwan. Environ. Geol. 44, 731-737.
Chen, Y.T., 2004. Sulfate-reducing bacteria and geochemistry of porewater from Putai core sediments in Chianan plain, Taiwan. Masters thesis, Department of Geoscience, National Taiwan University, Taipei, Taiwan, ROC.
Chinese Society of Agricultural Engineers, 1999. Compilation “Groundwater in Taiwan-Choushuichi alluvial plain”. Taiwan Water Resource Bureau.
Chowdhury, U.K., Biswas, B.K., Chowdhury, T.R., Samanta, G., Mandal, B.K., Basu, G.C., Chanda, C.R., Lodh, D., Saha, K.C., Mukherjee, S.K., Roy, S., Kabir, S., Zaman, Q., Chakraborti, D., 2000. Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 108, 393–397.
Dipankar, D., Amit, C., Samanta, G., Mandal, B.K., Chowdhury, T.R., Chowdhury, P.P., Chanda, C.R., Gautam, B., Dilip, L., Swarup, N., Chakroborty, T., Mandal, S., Bhattacharya, S.M., Chakraborti, D., 1994. Arsenic contamination in groundwater in six districts of West Bengal, India: The biggest arsenic calamity in the world. Analyst 119, 168–170.
Dixit, S., Hering, J.G., 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 37, 4182-4189.
Foster, A.L., Breit, G.N., Welch, A.H., Whitney, J.W., Yount, J.C., Islam, M.S., Alam, M.M., Islam, M.K., Islam, M.N., 2000. In-situ identification of arsenic species in soil and aquifer sediment from Ramrail, Brahmanbaria, Bangladesh. Abstract H21D-01. In Am. Geophys. Union Fall Annual Meeting, San Francisco. 15–19 Dec. 2000. AGU, Washington, DC.
Francesconi, K.A., and Edmonds, J.S., 1997. Arsenic and marine organisms. Adv. Inorg. Chem. 44, 147–189.
Francesconi, K.A., Goessler, W., Panutrakul, S., Irgolic, K.J., 1998. A novel arsenic containing riboside (arsenosugar) in three species of gastropod. Sci. Total Environ. 221, 139–148.
Garcia-Sanchez, A., Moyano, A., and Mayorga, P., 2005. High arseniccontents in groundwater of central Spain. Environ. Geol. 47, 847-854.
Gaus, I., Webster, R., Kinniburgh, D.G., 2001. Scales of variation. p. 161–173. In D.G. Kinniburgh and P.L. Smedley (ed.) Arsenic contamination of groundwater in Bangladesh. Tech. Rep. WC/00/19. British Geol. Survey, Keyworth.
Han, B.C., Jeng, W.L., Chen, R.Y., Fang, G.T., Hung, T.C., Tseng, R.J., 1998. Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Arch. Environ. Contam. Toxicol. 35, 711-720.
Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K., Fendorf, S., 2003. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 67, 2977-2992.
Hansel, C.M., Benner, S.G., Nica, P., Fendorf, S., 2004. Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochim. Cosmochim. Acta. 68, 3217-3229.
Harvey, C.F., Swartz, C.H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P.M., Ashfaque, K.N., Islam, S., Hemond, H.F., Ahmed. M.F., 2002. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602-1606.
Herbel, M., Fendorf, S., 2005. Transformation and transport of arsenic within ferric hydroxide coated sands upon dissimilatory reducing bacterial activity. In advances in arsenic research; O’Day, P.A., Vlassopoulos, D., Meng, X., Benning, L., Eds., ACS Symposium Series 915, American Chemical Society, Washington, DC, 77-90.
Herbel, M., and Fendorf, S., 2006. Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geol. 228, 16-32.
Hering, J.G., Chen, P.Y., Wilkie, J.A., Elimelech, M., 1997. Arsenic removal from drinking water during coagulation. J. Environ. Eng.-ASCE 123, 800–807.
Hsia, M.H., 1997. Geochemistry of sediment cores from Yih-Jwu, southwestern Taiwan. Masters thesis, Department of Geoscience, National Taiwan University, Taipei, Taiwan, ROC.
Huang, C.Y., 1996. Foraminiferal analysis and stratigraphic correlation on the subsurface geology of the Choushuichi alluvial fan. p. 55–66. In Conf. on Groundwater and Hydrogeology of Choushui River Alluvial Fan. Water Resources Bureau, Taipei.
Huang, Y.K., Lin, K.H., Chen, H.W., Chang, C.C., Liu, C.W., Yang, M.H., Hsueh, Y.M., 2003. As species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in BFD hyperendemic areas. Food Chem. Toxicol. 41, 1491-1500.
Islam, F.S., Gault, A.G., Boothman, C., Polya, D.A., Charnock, J.M., Chatterjee, D., Lloyd, J.R., 2004. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68-71.
Islam, F.S., Pederick, R.L., Gault, A.G., Adams, L.K., Polya, D.A., Charnock, J.M., Lloyd, J.R., 2005. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl. Environ. Microbiol. 71, 8642-8648.
Jang, C.S., 1996. Three dimensional numerical simulation the groundwater flow in Yun-Lin. Masters thesis, Department of Agricultural Engineering, National Taiwan University, Taipei, Taiwan, ROC.
Jang, C.S., and Liu, C.W., 2005. Contamination potential of nitrogen compounds in the heterogeneous aquifers of the Choushui river alluvial fan, Taiwan. J. Contam. Hydrol. 79, 135-155.
Jang, C.S., Liu, C.W., Lin, K.H., Huang, F.M., Wang, S.W., 2006. Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilpia (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Environ. Sci. Technol. 40, 1707-1713.
Karim, M.M., 2000. Arsenic in groundwater and health problems in Bangladesh. Water Res. 34, 304–310.
Kim, M.J., Nriagu, J., Haack, S., 2000. Carbonate ions and arsenic dissolution by groundwater. Environ. Sci. Technol. 34, 3094-3100.
Kinniburgh, D.G., 2001. Sorption and transport. p. 211–228. In D.G. Kinniburgh and P.L. Smedley (ed.) Arsenic contamination of groundwater in Bangladesh. Tech. Rep. WC/00/19. British Geol. Survey, Keyworth.
Kocar, B.D., Herbel, M.J., Tufano, K.J., Fendorf, S., 2006. Contrasting effects if dissimilatory iron(III) and arsenic(V) reduction on arsenic retention and transport. Environ. Sci. Technol. 40, 6715-6721.
Kuhn, A., and Sigg, L., 1993. Arsenic cycling in eutrophic Lake Greifen, Switzerland: Influence of seasonal redox processes. Limnol. Oceanog. 38, 1052-1059.
Lai, M.S., Hsueh, Y.M., Chen, C.J., Shyu, M.P., Chen, S.Y., Kuo, T.L., Wu, M.M., Tai, T.Y., 1994. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am. J. Epidemiol. 139, 484-492.
Lambrakis, N.J., Voudouris, K.S., Tiniakos, L.N., Kallergis, G.A., 1996. Impacts of simultaneous action of drought and overpumping on quaternary aquifers of glafkos basin (Patras Region, Western Greece). Environ. Geol. 29, 209–215.
Lee, C.W. 2000. Geochemical characteristics of porewater and sediments from Kang-wei and Sin-wen, southwestern Taiwan. Masters thesis, Department of Geoscience, National Taiwan University, Taipei, Taiwan, ROC.
Liao, C.M., and Ling, M.P., 2003. Assessment of human health risks for arsenic bioaccumulation in tilapia (Oreochromis mossambicus) and large-scale mullet (Liza macrolepis) from blackfoot disease area in Taiwan. Arch. Environ. Contam. Toxicol. 45, 264-272.
Lin, Y.D., 1995. Sedimentary analysis and organic geochemistry of the Tzai-Kong and the San-Liau-Wan core and their environmental implications. Masters thesis, Department of Earth Science, National Cheng-Kung University, Tainan, Taiwan, ROC.
Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 313, 77-89.
Liu, C.W., Huang, F.M., Hsueh, Y.M., 2005. Revised cancer risk assessment of inorganic arsenic upon consumption of tilapia (Oreochromis mossambicus) from blackfoot disease hyperendemic areas. Bull. Environ. Contam. Toxicol. 74, 1037-1044.
Liu, C.W., Wang, S.W., Jang, C.S., Lin, K.H., 2006. Occurrence of arsenic in ground water in the Choushui river alluvial fan, Taiwan. J. Environ. Qual. 35, 68-75.
Liu, T.K., 1999. The study of radiocarbon ages and vertical groundwater quality of the Chianan plain. Taiwan Water Resource Bureau.
Lloyd, J.R., 2003. Microbial reduction of metals and radionuclides. Fems Microbiol. Rev. 27, 411-425.
Loeppert, R.H., 1997. Arsenate, arsenite retention and release in oxide and sulfide dominated systems. Technical report no.176, Texas Water Resources Institute, College Station, Texas, USA.
Lovley, D.R., 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55, 259-287.
Lovley, D.R., Phillips, E.J.P., 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53, 1536-1540.
Lu, K.L., 2007. The study of arsenic release mechanisms from geogenic deposits of the Choushui river alluvial fan, Taiwan. Master thesis, Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC.
Mahimairaja, S., Bolan, N.S., Adriano, D.C., Robinson, B., 2005. Arsenic contamination and its risk management in complex environmental settings. Adv. Agron. 86, 1–82.
Malasarn, D., Saltikov, C.W., Campbell, K.M., Santini, J., Hering, J.G., Newman, D.K., 2004. arrA is a reliable marker for As(V) respiration. Science 306, 455.
Mandal, B.K., Chowdhury, T.R., Samanta, G., Basu, G.K., Chowdhury, P.P., Chanda, C.R., Lodh, D., Karan, N.K., Dhar, R.K., Tamili, D.K., Das, D., Saha, K.C., Chakraborti, D., 1996. Arsenic in groundwater in seven districts of West Bengal, India the biggest arsenic calamity in the world. Curr. Sci. 70, 976-986.
Masscheleyn, P., Delaune, R., Patrick, J.W., 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25, 1414-1419.
McArthur, J.M., Ravenscroft, P., Safiullah, S., Thirlwall, M.F., 2001. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37, 109-117.
Methe, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., Wu, D., Wu, M., Ward, N., Beanan, M.J., Dodson, R.J., Madupu, R., Brinkac, L.M., Daugherty, S.C., DeBoy, R.T., Durkin, A.S., Gwinn, M., Kolonay, J.F., Sullivan, S.A., Haft, D.H., Selengut, J., Davidsen, T.M., Zafar,,N., White, O., Tran, B., Romero, C., Forberger, H.A., Weidman, J., Khouri, H., Feldblyum, T.V., Utterback, T.R., Van Aken, S.E., Lovley, D.R., Fraser, C.M, 2003. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967-1969.
Nicholas, D.R., Ramamoorthy, S., Palace, V., Spring, S., Moore, J.N., Rosenzweig, R.F., 2003. Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 14, 123-137.
Nickson, R., McArthur J., Burgess W., Ahmed K. M., Ravenscroft P., Rahman M., 1998. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338-338.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G., Ahmed, K.M., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403-413.
Nordstrom, D.K., 2002. Public health—Worldwide occurrences of arsenic in groundwater. Science (Washington, DC) 296, 2143–2145.
Oremland, R.S., Stolz, J.F., 2003. The Ecology of Arsenic. Science 300, 393-944.
Oremland, R.S., Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 13, 45-49.
Parkhurst, D.L., 1995. User’s Guide to PHREEQC, A Computer Model for Speciation, Reaction-Path, Advective-Transport and Inverse Geochemical Calculations. U. S. Geol. Surv. Water-Resour. Invest. Rep. 4195-4227.
Pearce, J., Kinniburgh, D.G., Smedley, P.L., Ahmed, K.M., Rahman, M., 2001. Mineralogy and sediment chemistry. p. 187–210. In D.G. Kinniburgh and P.L. Smedley (ed.) Arsenic contamination of groundwater in Bangladesh. Tech. Rep. WC/00/19. British Geol. Survey, Keyworth.
Petalas, C., and Lambrakis, N., 2006. Simulation of untense salinization phenomena in coastal aquifers – the case of the coastal aquifers of Thrace. J. Hydrol. 324, 51-64.
Polizzotto, M.L., Harvey, C.F., Sutton, S.R., Fendorf, S., 2005. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc. Nat. Acad. Sci. U. S. A. 102, 18819-18823.
Redman, A.D., Macalady, D.L., Ahmann, D., 2003. Natural organic matter affects arsenic speciation and adsorption on hematite. Environ. Sci. Technol. 36, 2889-2896.
Reyment R.A, and Joreskog KH., 1993. Applied Factor Analysis in the Natural Sciences. Cambridge University Press, New York, USA.
Roden, E.E., 2004. Analysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics. Geochim. Cosmochim. Acta 68, 3205-3216.
Royer, R.A., Dempsey, B.A., Jeon, B.H., Burgos, W., 2004. Inhibition of biological reductive dissolution of hematite by ferrous iron. Environ. Sci. Technol. 38, 187-193.
Saltikov, C.W., Cifuentes, A., Vankateswaran, K., Newman, D.K., 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69, 2800-2809.
Schwertmann, U., Cornell, R.M., 1991. Iron oxides in the laboratory: Preparation and characterization. VCH, New York, 1991.
Smedley, P.L., and Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568.
Smedley, P.L., Zhang, M., Zhang, G., Luo, Z., 2003. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 18, 1453–1477.
Smith, E., Naidu, R., Alston, A.M., 1998. Arsenic in the soil environment. A review. Adv. Agron. 64, 149–195.
Spliethoff, H.M., Mason, R.P., Hemond, H.F., 1995. Interannual variability in the speciation and mobility of arsenic in a dimictic lake. Environ. Sci. Technol. 29, 2157-2161.
SPSS Inc., 1998. SPSS BASE 8.0 - Application Guide. SPSS Inc, Chicago, USA.
Stumm, W., and Morgan, J.J., 1981. Aquatic Chemistry. 2nd ed. John Wiley & Sons, New York.
Swartz, C.H., Blute, N.K., Badruzzman, B., Ali, A., Brabander, D., Jay, J., Besancon, J., Islam, S., Hemond, H.F., Harvey, C.F., 2004. Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data and mineralogical characterization. Geochim. Cosmochim. Acta 68, 4539-4557.
Tainan Hydraulic Laboratory, 2002. The Yun-Lin offshore infrastructure industrial complex. Planning, Development and Monitoring Res. Rep. Part I(7). Natl. Cheng-Kung Univ., Tainan, Taiwan.
Taiwan Sugar Company, 1997. Establishment and operational management of groundwater monitoring network. Taiwan Water Resource Bureau.
Taiwan Sugar Company, 2002. Groundwater quality by the Taiwan groundwater monitoring network (4/5). Taiwan Water Resource Bureau.
Taiwan Sugar Company, 2003. Groundwater quality by the Taiwan groundwater monitoring network (5/5). Taiwan Water Resource Bureau.
Taiwan Sugar Company, 2004. Groundwater quality by the Taiwan groundwater monitoring network (1/2). Taiwan Water Resource Bureau.
Thoral, S., Rose, J., Garnier, J.M., Van Geen, A., Refait, P., Traverse, A., Fonda, E., Nahon, D., Bottero, J.Y., 2005. XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). Environ. Sci. Technol. 39, 9478-9485.
Tseng, W.P., Chen, W.Y., Sung, J.L., Chen, J.S., 1961. A clinical study of blackfoot disease in Taiwan, an endemic peripheral vascular disease. Memoire College Med., National Taiwan University 7, 1-18.
Tseng, W.P., 1977. Effects and dose-response relationship of skin cancer and Blackfoot disease with arsenic. Environ. Health Perspect. 19, 109-119.
Tseng, W.P., 1985. Blackfoot disease and skin cancer in an endemic area of chronic arsenicism in Taiwan. Proc. Seminar Environ. Toxicol. Taipei, 26 March to 2 April 1985, 142-155.
Umitsu, M., 1993. Late Qaternary sedimentary environments and landforms in the Ganges Delta. Sediment. Geol. 83, 177–186.
Valette-Silver, N.J., Riedel, G.F., Crecelius, E.A., Windom, H., Smith, R.G., Dolvin, S.S., 1999. Elevated arsenic concentrations in bivalves from the southeast coasts of the USA. Mar. Environ. Res. 48, 311–333.
Van Geen, A., Rose, J., Thoral, S., Garnier, J.M., Zheng, Y., Bottero, J.Y., 2004. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. Geochim. Cosmochim. Acta 68, 3475-3486.
Villalobos, M., Trotz, M.A., Leckie, J.O., 2001. Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb-(II), and U(VI) on goethite. Environ. Sci. Technol. 35, 3849-3856.
Vink, B.W., 1996. Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol. 130, 21-30.
Wang, S.W., Liu, C.W., Jang, C.S., 2007. Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Appl. Geochem. 22, 460-476.
Welch, A.H., Westlohn, D.B., Helsel, D.R., Wanty, R.B., 2000. Arsenic occurrence in groundwater of the United State: Occurrence and geochemistry. Ground Water 38, 589–604.
Wilkie, J.A., and Hering, J.G., 1996. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surf. A-Physicochem. Eng. Asp. 107, 97–110.
Wilkie, J.A., and Hering, J.G., 1998. Rapid oxidation of geothermal arsenic (III) in streamwaters of the eastern Sierra Nevada. Environ. Sci. Technol. 32, 657–662.
Wu, M.M., Kuo, T.L., Hwang, Y.H., Chen, C.J., 1989. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases Am. J. Epidemiol. 130, 1123-1132.
Yen, F.S., 1978. The arsenic anomaly in the downstream area of Tsengwenchi, Taiwan. National Science Council Monthly 3, 227-243.
Yen, F.S., Long, C.N., Lu, T.H., 1980. An environmental model of high arsenic concentration in the groundwater aquifer of Taiwan. J. Taiwan Environ. Sanitation 12, 66–80.
Zheng, Y., Stute, M., van Geen, A., Gavrieli, I., Dhar, R., Simpson, H.J., Schlosser, P., Ahmed, K.M., 2004. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19, 201-214.
Zobrist, J., Dowdle, P.R., Davis, J.A., Oremland, R.S., 2000. Mobilization of arsenite by dissimiliatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34, 4747-4753.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊