跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯凱元
研究生(外文):Kai-Yuan Ke
論文名稱:利用砂箱試驗與遲滯模式探討土壤保水曲線與沈陷特性關係之研究
論文名稱(外文):Investigation of Relation between Soil Water Characteristic Curve and Consolidation by Sand Box Test and Hysteresis Modeling
指導教授:譚義績譚義績引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:99
中文關鍵詞:壓密砂箱實驗遲滯現象孔隙率
外文關鍵詞:consolidationsand box testhysteresisporosity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於天然(季節變化、降雨入滲、地震)或是人為活動(灌溉、抽水、蓋建築物),皆會導致土壤體積變化,亦可說是孔隙率改變,因此研究之主題常分為兩類,第一類為由於天然或人為活動造成土壤中應力變化時,可造成土壤多少之壓密或是沈陷量,而此類研究在計算未飽和土壤之壓密或是沈陷量時,常是在保水曲線之性質為固定之情形下,去討論或計算水份變化與土壤體積變化之關係;而另外一類討論的是當土壤體積或是孔隙率變化時,可知土壤之水力性質(如飽和水力傳導係數、保水曲線)亦會受到一定程度之影響,進而去求得孔隙率變化與土壤之水力性質間的關係,卻無探討當水力性質受到孔隙率變化影響後,如何真正影響到土壤中之水份運移行為。
因此本研究的目的在於藉由砂箱實驗及數值模式以深入瞭解(土壤孔隙率變化-保水曲線遲滯現象-水份運移行為)三者之交互影響,因為本研究認為未飽和土壤中之體積或是孔隙率變化,最直接受到影響的必然是其保水曲線之行為,且更進一步會影響土壤內水份運移機制。
本研究進行保水曲線砂箱試驗,以夯實石英砂之方式瞭解孔隙率影響保水曲線變化,並得到保水曲線參數與孔隙率間之線性關係。另進行循環水位升降試驗,以控制邊界上水位之變化模擬自然界中地下水位之升降。如此一來,藉由水箱中水位之循環升降,可觀察砂箱內土壤於乾溼過程中,水份含量、土壤水份張力,及土壤體積三者之間之相互關係,同時發現土壤在排水的過程中,會有先沈陷後膨脹之趨勢。
本研究亦以遲滯模式探討土壤水份入滲曲線受到孔隙率變化之影響,而於定流量入滲數值模擬中發現,孔隙率因夯實而越低時,上邊界附近對應之含水比越高,溼鋒深度則越淺。而排水過程中,最大含水比之深度亦會隨著孔隙率之減少而變淺。此外,對於單一級配之石英砂而言,不論在溼潤或排水過程中,溼鋒發生的深度永遠是高孔隙率之土壤較深。
另外驗証循環水位升降砂箱試驗之土壤水份變化,試驗及模式驗証結果顯示,循環水位升降試驗將造成土壤之保水曲線性質及孔隙率之明顯改變,表示在水位升降之同時,含水比及水份張力之變化並非是單純由遲滯現象造成,而需同時考量孔隙率對保水曲線之影響。
The soil volumn (or the porosity) would change with respect to natural event such as seasonal variation, precipitation, earthquake, or human activities, such as irrigation, pumping, and structure building. Two kinds of previous studies on this field:(1) the consolidation or compaction due to stress changed in the soil by natural enents or human activities, while the the water retention curve(WRC) is considered to have fixed parameters; (2) the relation between the change of porosity and hydraulic parameters of soil, because the hydraulic properties, such as the saturated hydraulic conductivity or parameters of water retention curve, of the soil must be somewhat changed due to the change in soil volume or porosity. But this kind of research barely discussed the soil water movement with respect to the change of hydraulic parameters.
The purpose of this study is to find out the interactive mechanism between change of porosity, hysteresis and soil water movement. This research considers that the change of volumn or porosity in the unsaturated soil will directly influence the behavior of the water retention curve, and thus the mechanism of soil water movement.
This study finds out the linear relation between the WRC parameters and the porosity of quartz sand with a WRC sand box test. Besides, a recycling water level sand box test is also conducted to study the interactive relation of water content, soil water tension and soil volumn by controlling the boundary condition to similuate the groundwater change. In the mean time, a consolidation process followed by a swelling process is found during drainage.
In the infiltration simulation, while the porosity becomes smaller due to compaction, higher water content appears near the top boundary, and the wetting front depth decreases with the porosity. When top boundary flux is set to zero, the depth of the highest water content decreases with porosity. Besides, no matter the top boundary is zero flux or non-zero flux, the deepest wetting front always occurs in the soil with the highest porosity.
In addition, the result of the recycling water level sand box test is verified with a hysteresis model. The results show that the repeated water level change will lead to the change of property of water retention curve and soil consolidation, indicating that the change of water content and soil water tension is caused by hysteresis, as well as change of porosity.
謝誌 0
目錄 ii
圖目錄 iv
表目錄 ix
中文摘要 xi
Abstract xiii
一、前言 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 研究流程 3
1.4 本文架構 3
二、文獻回顧 5
2.1 保水曲線與未飽和水流之理論 5
2.2 遲滯現象之成因 7
2.3 土壤水力參數之預測 9
2.4土壤體積變化理論 10
三、理論分析與砂箱試驗 14
3.1 理論分析 14
3.1.1 保水曲線理論 14
3.1.2 土壤體積變化理論 16
3.2 砂箱試驗設計與進行 17
3.2.1 土壤基本性質試驗 18
3.2.2 保水曲線砂箱試驗 21
3.2.3 循環水位升降砂箱試驗 26
四、遲滯模式分析土壤水份變化及沈陷特性 62
4.1 遲滯模式之建立 62
4.2 遲滯模式分析不同孔隙率下之入滲 68
4.2.1 模擬案例 68
4.2.2 結果分析 69
4.3 遲滯模式分析循環水位升降砂箱試驗 73
4.3.1 模式參數之輸入 73
4.3.2 數值模擬之結果分析 75
五、結論與建議 91
5.1 結論 91
5.2 建議 92
參考文獻 94
附錄一 100
簡歷 103
1.Aitchison G. D., 1965. Soil properties, shear strength, and consolidation. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation and Engineering, Montreal, canada 3: 318–321.
2.Aitchison G. D., 1973. The quantitative description of the stress deformation behavior of expansive soils—preface to set of papers. In Proceedings of the 3rd International Conference on Expansive Soils, Haifa, Israel 2: 79–82.
3.Alessi, S., L. Prunty, and W. H. Schu, 1992. Infiltration Simulations among Five Hydraulic Property Model, Soil Sci. Am. J., Vol. 56, pp. 675-682.
4.Arya, L. M. and J. F. Paris, 1981. A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data, Soil Sci. Soc. Am. J. 45, pp. 1218-1227.
5.Arya, L. M., F. J. Leij, van Genuchten, M.Th., Shouse, P. J., 1999a. Scaling parameter to predict the soil water characteristic from particle-size distribution data, Soil Sci. Soc. Am. J. 63, pp.510-519.
6.Arya, L.M., F. J. Leij, P. J. Shouse, van Genuchten, M. Th., 1999b. Relationship between the hydraulic donductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 63, pp. 1063-1070.
7.Ausilio, E., and E. Conte, 1999. Settlement rate of foundations on unsaturated soils. Canadian Geotechnical Journal, 36, pp. 940–946.
8.Barden L, A. O. Madedor, G. R. Sides. 1969. Volume change characteristics of unsaturated clay. Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers 95(SM1): 33–52.
9.Barden, L., 1965. Consolidation of compacted and unsaturated clays. Géotechnique, 15(3): 267–286.
10.Bear, J., and M. Y. Corapcioglu, 1981b. Mathematical model for regional land subsidence due to pumping: 2. Integrated aquifer subsidence equations for vertical and horizontal displacements, Water Resour. Res., Vol. 17, pp. 947-958.
11.Beese, F., and R. R. van der Ploeg, 1976. Influences of hysteresis on moisture flow in an unsaturated soil monolith, Soil Sci. Am. J, Vol. 40, pp. 480-484.
12.Biot M. A., 1941. General theory of three-dimensional consolidation, Journal of Applied Physics 12(2): 155–164.
13.Bishop A. W., 1959. The principle of effective stress. Teknisk Ukeblad 106(39): 859–863.
14.Booker, J. R., and J. P. Carter, 1986. Analysis of a point sink embedded in a porous elastic half space, Int. J. Numer. Anal. Methods Geomech., Vol. 10, pp. 137-150.
15.Brooks, R. H. and A. T. Corey, 1964. Hydraulic properties of porous media, Colo. State Univ. Hydrology Paper No.3.
16.Burbey T. J., S. M. Warner, G. Blewitt, J. W. Bell and E. Hill, 2006. Three-dimensional deformation and strain induced by municipal pumping, part 1: Analysis of field data, Journal of Hydrology, 319, 123-142.
17.Chang, C. S., and J. M. Duncan., 1983. Consolidation analysis for partly saturated clay by using an elastic–plastic effective stress – strain model. International Journal for Numerical and Analytical Methods in Geomechanics, 7: 39–55.
18.Clapp, R. B. and G. M. Hornberger, 1978. Empirical equations for some soil hydraulic-properties, Water Resour. Res. 14, 601-604
19.Conte, E. 1998. Consolidation of anisotropic soil deposits. Soils and Foundations, 38(4): 227–237.
20.Conte, E., 2004. Consolidation analysis for unsaturated soils, Can. Geotech. J. 41, pp. 599–612
21.Corapcioglu, M. Y., and J. Bear, 1983. A mathematical model for regional land subsidence due to pumping: 3. Integrated equations for a phreatic aquifer, Water resour. Res., Vol. 19, pp. 895-908.
22.Cox D. W., 1978. Volume change of compacted clay till, In Proceedings of the International Civil Engineering Conference on Clay Tills, pp. 79–86.
23.Dakshanamurthy, V., D.G. Fredlund, and H. Rahardjo, 1984. Coupled three-dimensional consolidation theory of unsaturated porous media. In Proceedings of the 5th International Conference on Expansive Soils, Adelaide, South Australia, 21–23 May 1984. American Society of Civil Engineering, New York.pp. 99–103.
24.Escario V., and J. Saez, 1973. Measurement of the properties of swelling and collapsing soils under controlled suction, In Proceedings of the 3rd International Conference on Expansive Soils, Haifa, Israel 1: 195–200.
25.Florian C. Stange and R. Horn, 2005. Modeling the Soil Water Retention Curve for Conditions of Variable Porosity, Vadose Zone Journal 4, pp. 602–613
26.Fredlund, D. G., and J. U Hasan, 1979. One-dimensional consolidation theory: unsaturated soils. Canadian Geotechnical Journal, 16: 521–531.
27.Fredlund D. G. and H. Rahardjo, 1986. Unsaturated Soil Condsolidation Theory and Laboratory Experimental Data, Consolidation of Soils: Testing and Evaluation, ASTM STP 892, R. N. Yong and F. C. Townsend, Eds., ASTM, Philadelphia, PA, pp. 154-169.
28.Fredlund D. G. and N. R. Morgenstern, 1977. Stress-state variables for unsaturated soils. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers 103(GT5): 447–466.
29.Fredlund D. G. and H. Rahardjo, 1993. Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc..
30.Ghaboussi J. and E. L Wilson, 1973. Flow of compressible fluid in porous elastic solids. International Journal for Numerical Methods in Engineering, 5: 419–442.
31.Haverkamp, R. and J. Y. Parlange, 1986. Predicting the water-retention curve from particle size distribution: 1. Sand soils without organic matter. Soil Sci. 142, pp. 325-339.
32.Hillel D., V. D. Krentos and Y. Stylianou, 1972. Procedure and test of an internal drainage method for measuring soil hydraulic characteristics in situ, Soil Science, Vol. 114, No. 5, pp. 395-400
33.Horn R., 2004. Time dependency of soil mechanical properties and pore functions for arable soils. Soil Sci. Soc. Am. J. 68:1131–1137.
34.Horton R., M. D. Alkeny, and R. R. Allmaras, 1994. Effects of compaction on soil hydraulic properties, pp. 141–165. In B.D. Soane and C. van Ouwerkerk (ed.) Soil compaction in crop production. Elsevier, Amsterdam.
35.Hutson J. T. and A. Cass, 1987. A retentivity function for use in soil-water simulation models [J]. J. Soil Sci. 38, pp.105- 113.
36.Jennings J. E., 1961. A revised effective stress law for use in the prediction of the behavior of unsaturated soils. In Pore Pressure and Suction in Soils, Conference Organized by the British National Society of International Society Soil Mechanics and Foundation Engineering at the Institute of Civil Engineers, London. Butterworths: London; 26–30.
37.Ke K. Y., Y. C. Tan, C H Chen, K. S. Chim and T.-C. Jim Yeh , 2004. Theoretical and Experimental Studies on Volumetric Compression Properties of Unsaturated Soil During Drainage, Hydrological Processes. Vol. 18, Issue 13, pp.2565-2578
38.Kihm J. -H., J. -M. Kim, S. -H. Song and G. -S. Lee, 2007. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system, Journal of hydrology, 335, pp.1-14.
39.Leij, F.J., T.A. Ghezzehei, and D. Or, 2002. Modeling the dynamics of the soil pore-size distribution. Soil Tillage Res. 6:61–78.
40.Lewis, R. W., B. A. Schrefler, and L. Simoni, 1991, Coupling versus uncoupling in soil consolidation, Int. J. Numer. Ana. Methods Geomech., Vol. 15, pp. 533-548.
41.Liu C. N., R. H. Chen and K. S. Chen, 2006, Unsaturated consolidation theory for the prediction of long-term municipal solid waste landfill settlement, Waste Management & Research, Vol. 24, No. 1, 80-91.
42.Lloret A., E. E. Alonso, 1980. State surfaces for partially saturated soils. In Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, San francisco, CA, USA 2: 557–562.
43.Lloret, A., A. Gens, F. Batlle and E. E Alonso, 1987. Flow and deformation analysis of partially saturated soils. In Groundwater Effects in Geotechnical Engineering: Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, Ireland, 31 August – 9 September 1987. A.A. Balkema, Rotterdam, The Netherlands. Vol. 2, pp. 565–568.
44.Lu, R. H., H. D. Yeh, and G. T. Yeh, 1993. Finite element modeling for land displacements due to pumping, in Engineering Hydrology, edited by C. Y. Kuo, pp. 904-909, Am. Soc. of Civ. Eng., Reston, Va.
45.Maswoswe J., 1985. Stress paths for a compacted soil during collapse due to wetting. PhD dissertation, Imperial College, London.
46.Matyas E. L. and H. S. Radhakrishna, 1968. Volume change characteristics of partially saturated soils. Geotechnique 18(4): 432–448.
47.Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research, Vol.12, No.3, pp. 513-522.
48.Noorishad, J., M. Mehran, and T. N. Narasimhan, 1982. On the formulation of saturated-unsaturated fluid flow in deformable porous media, Adv. Water Resour., Vol. 5, pp. 61-62.
49.Olson, R.E. 1986. State-of-the-art: consolidation testing. In Consolidation of soils, testing and evaluation. Edited by R.N. Yong and F.C. Townsend. American Society for Testing and Materials (ASTM), Philadelphia, Pa., Special Technical Publication STP 892, pp. 7–70.
50.Rawls W. J., T. J. Gish and D. L. Brakensiek, 1991. Estimating soil water retention from soil physical properties and characteristics [J]. Advances in Soil Science, 16, pp.213- 235.
51.Richards B. G., 1966. The significance of moisture flow and equilibria in unsaturated soils in relation to the design of engineering structures built on shallow foundations in australia. Presented at the Symposium On Permeability and Capillary, American Society of Testing Materials, Atlantic City, NJ.
52.Safai, N. M., and G. F. Pinder, 1979. Vertical and Horizontal land deformation in a desaturating porous medium, Adv. Water Resour., Vol. 2, pp. 19-25.
53.Safai, N. M., and G. F. Pinder, 1980, Vertical and horizontal land deformation due to fluid withdrawal, Int. J. Numer. Anal. Methods Geomech., Vol. 4, pp. 131-142.
54.Sattler P. J. and D. G. Fredlund, 1991. Numerical modeling of vertical ground movements in expansive soils. Canadian Geotechnical Journal 28: 189–199.
55.Shuai F. and D. G. Fredlund, 1998. Model for the simulation of swelling-pressure measurements on expansive soils. Canadian Geotechnical Journal 35: 96–114.
56.Startsev A. D. and D. H. McNabb, 2001. Skidder Traffic Effects on Water Retention, Pore-Size Distribution, and van Genuchten Parameters of Boreal Forest Soils, Soil Sci. Soc. Am. J. 65, pp. 224–231
57.Tadepalli R., H. Rahardjo, D. G. Fredlund, 1992. Measurements of matric suction and volume changes during inundation of collapsible soil. Geotechnical Testing Journal 15: 115–122.
58.Terzaghi K., 1936. The shear resistance of saturated soils. In Proceedings, 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, MA, Vol. 1; 54–56.
59.Terzaghi K., 1943. Theoretical Soil Mechanics, pp.270- 296.
60.Thomas, H. R. and Y. He, 1997. A coupled heat–moisture transfer theory for deformable unsaturated soils and its algorithmic implementation. International Journal for Numerical Methods in Engineering, 40: 3421–3441.
61.Tyler, S. W. and S. W. Wheatcraft, 1989. Application of fractal mathematics to soil water retention estimatieon. Soil Sci. Soc. Am. J. 53, pp. 987-996.
62.van Genuchten, M. Th., 1980, A closed- form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci.Am.J, Vol.44, no.5, pp. 892-898.
63.Verruijt A., 1969. Elastic storage of aquifers. In Flow through porous media. Edited by R.J.M. de Wiest. Academic Press, New York. pp. 331–375.
64.Wong, T. T., D. G. Fredlund and J. Krahn, 1998. A numerical study of coupled consolidation in unsaturated soils. Canadian Geotechnical Journal, 35: 926–937.
65.Yeh, H. D., R. H. Lu and G. T. Yeh, 1996. Finite element modeling for land displacements due to pumping, Int. J. Numer. Anal. Methods Geomech., Vol. 20, pp. 79-99.
66.王銘燦,2002,遲滯土壤水份傳輸數值模式之研究,國立台灣大學生物環境系統工程研究所碩士論文。
67.黃漢誠、陳主惠、譚義績,2000,未飽和土壤水份遲滯效應之研究,中國農業工程學報,第46卷,第四期,第33∼47頁。
68.楊欣常,2001,土壤水份遲滯理論模式與實驗分析,國立台灣大學農業工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top