( 您好!臺灣時間:2023/02/06 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chien-Sen Liao
論文名稱(外文):Effects of Endocrine Disruptor Di-n-butyl Phthalate on the Physiology of Bok choy and Chinese cabbage
指導教授(外文):Yei-Shung Wang
外文關鍵詞:Endocrine DisruptorDi-n-butyl PhthalatePlant PhysiologyProteomics
  • 被引用被引用:1
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是探討環境荷爾蒙(endocrine disrupter)中,用量最多、污染情形最嚴重的鄰苯二甲酸二丁酯(Di-n-butyl phthalate, DBP)對葉菜類作物的影響。基於台灣河川及沿岸日益嚴重的環境污染,本研究選擇了小白菜(Brassica rapa subsp. chinensis)與青江菜(Brassica rapa var. chinensis)此二種,在台灣種植面積最廣、生產期最長、食用人口最多、且須引用河川水或地下水灌溉來的葉菜類作物做為供試植物。
研究結果發現,經過濃度為30 mg L-1的DBP處理下,在第三十六天時,小白菜的葉片會開始產生白化的現象,而到第四十二天時,白化的區域已擴散至全葉面。經穿透式電子顯微鏡來觀察葉片細胞的結果發現,DBP會造成小白菜葉片細胞內葉綠體結構的改變,並造成葉綠體膜的不規則外翻。此外,在不同濃度的DBP處理下,皆會造成小白菜生質量與葉綠素濃度的降低,並同時可發現DBP於植體內的累積。
在小白菜蛋白質體(proteomic analysis)與質譜儀(mass spectrometry)的分析結果中發現,DBP會造成小白菜體內兩種自由基分解酵素的升高,此兩種酵素分別是:superoxide dismutase與peroxidase 21 precursor。由此結果,我們可以推論,DBP的處理,會直接或間接的造成小白菜體內產生自由基,因此迫使面對逆境下的小白菜,會產生自由基分解酵素來因應。此外,DBP亦會造成小白菜體內四種生長酵素之異常降低,分別是:protein disulfide isomerase precursor、apocytochrome f precursor、RNA polymerase beta subunit與heat shock cognate protein 80,此四種酵素在細胞體內分別是負責蛋白質結構的折疊、電子傳遞鏈、與DNA的轉錄作用。因此,我們可以由此推論,小白菜經DBA處理後,所降低的這四種酵素,可能就是影響小白菜葉片白化及生長受阻的主要原因。
在青江菜的部分,研究結果發現,經過濃度為50 mg L-1的DBP處理下,在第三十六天時,青江菜的葉片會開始產生黃化的現象,而到第四十二天時,黃化的區域已擴散至全葉面。但由穿透式電子顯微鏡的觀察中,則並無發現葉綠體結構的明顯改變。此外,如同小白菜的測試結果,在DBP的處理下,亦會造成青江菜生質量與葉綠素濃度的降低,並可發現DBP於植體內的累積。
在青江菜的蛋白質體分析(proteomic analysis)與質譜儀分析(mass spectrometry analysis)的結果中發現,DBP會造成青江菜體內三種酵素濃度的升高,此三種酵素分別是:acyl-[acyl-carrier-protein] desaturase, root phototropism protein 3與ferredoxin-nitrite reductase,而此三種酵素在細胞內所負責的功能,分別是脂肪酸合成、光合作用的訊息傳導、以及亞硝酸鹽的同化作用。由此結果,可以推論DBP的處理,會誘發在化學品逆境下的青江菜,體內特定生理反應的異常改變。此外,DBP亦會造成青江菜體內三種生長酵素之異常降低,分別是:dihydroflavonol-4-reductase、aminoacyl-tRNA synthetase與ATP synthase subunit beta,此三種酵素在細胞體內是分別負責類黃酮素(flavonoid)的生合成、tRNA的胺醯化作用(aminoacylation)、與ATP的產生。因此,可以由此推論,青江菜經DBA處理後,所降低的這三種酵素,可能就是影響青江菜葉片黃化與生長受阻的主要原因。
The effects of the endocrine disrupter, di-n-butyl phthalate (DBP), on the growth of leaf vegetable Bok choy (Brassica rapa subsp. chinensis) and Chinese cabbage (Brassica rapa var. chinensis) were investigated. The results showed that leaves of Bok choy became white in color with the occurrence of chlorosis and necrosis upon treating with 30 mg L-1 DBP in hydroponic culture for 42 days. Transmission electron microscopic images revealed that changes in the chloroplast structures accompanied the chlorosis. In addition, a decrease in biomass and chlorophyll, and accumulation of DBP, were found in DBP-treated Bok choy.
The proteome of the leaf tissue was analyzed using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Six protein spots were identified from 2-DE that showed reproducible differences in expression between the normal control and the DBP-treated Bok choy. Based on proteome level studies two protein spots increased were identified as superoxide dismutase (SOD) and peroxidase 21 precursor. These proteins are believed to increase in expression in response to free radical exposure as a detoxification mechanism. The other four protein spots disappeared on the leaf of treatment with DBP were identified as heat shock cognate protein 80, protein disulfide isomerase precursor, apocytochrome f precursor, and RNA polymerase beta subunit. These results are indicated that DBP might affect the polypeptide folding, electron transport chain and DNA transcription in the Bok choy cell and cause the restriction of growth and development in Bok choy.
Besides, the results of Chinese cabbage showed that leaves turned yellow in color with the occurrence of etiolation upon treating with 50 mg L-1 DBP for 42 days. Examination of grana structure in chloroplast under the TEM revealed the organelle unchanged in the tissue of yellow leaf. In addition, a decrease in biomass and chlorophyll, and accumulation of DBP, were found in DBP-treated Chinese cabbage.
There are also six protein spots were identified in 2-DE that showed reproducible differences in expression between the normal control and the DBP-treated Chinese cabbage. Three proteins were found or increased in amount and another three proteins were decreased or disappeared. Three protein spots increased were identified as acyl-[acyl-carrier-protein] desaturase (acyl-ACP desaturase), root phototropism protein 3 (RPT3) and ferredoxin-nitrite reductase (Fd-NiR). The three are responsible for the fatty acid biosynthesis, signal transduction of the phototropic response and nitrate assimilation in plant cells. These results are indicated that DBP seems to induce some physiological reactions increasing in the Chinese cabbage cell.
The other three protein spots that disappeared in Chinese cabbage on treatment with DBP were identified as dihydroflavonol-4-reductase (DFR), aminoacyl-tRNA synthetase (aaRS) and ATP synthase subunit beta. The results in this part revealed some damages or disorder of metabolism inside the Chinese cabbage cell that may partially be attributed to the change in the amounts of some proteins in the cell. Decrease of DFR indicated that DBP might affect the flavonoid biosynthesis and floral color development in the Chinese cabbage cell. This effect might the cause of Chinese cabbage leaf change to yellow. Decrease of aaRS indicated that DBP might affect the aminoacylation of tRNA and other transcriptional or translational regulation in the Chinese cabbage cell. This effect might cause some disorders of regular metabolism or development of Chinese cabbage. Decreased of ATP synthase subunit beta indicated that ATP synthesis in the Chinese cabbage cell might be affected by DBP and cause the restriction of growth and development in Chinese cabbage. From our results, we might say that DBP seems to induce some physiological reactions increasing and also cause the restriction of growth and development in Chinese cabbage. These results seem partially the same as that of Bok choy.
This study indicated that the growth and morphology of Bok choy and Chinese cabbage showed a significant dose-response relationship upon treatment with DBP in a hydroponic culture medium. Furthermore, DBP also affects the proteome formation as well as the physiology and the morphology of Bok choy and Chinese cabbage during growth.

Chapter 1 Introduction 1
1-1 What are endocrine-disrupting compounds (EDCs) 1
1-2 Characteristics of phthalate esters 2
1-2.1 General description 2
1-2.2 Uses of PAEs 5
1-2.3 Disposal and releases into the environment 6
1-3 Characteristics of Di-n-butyl phthalate 6
1-3.1 Chemistry 6
1-3.2 Usage and exposure 7
1-4 Some toxicological and biological parameters of Di-n-butyl phthalate 11
1-4.1 Toxicity 11
1-4.2 Toxicokinetics 11
1-4.3 Genetic toxicity 12
1-4.4 Developmental toxicity 12
1-4.5 Reproductive toxicity 13
1-4.6 Toxicity of green plants 15
1-5 Proteomics and bioinformatics of DBP-treated plants 17
1-6 The tetrapyrrole pathway in DBP-treated plants 20
1-6.1 The tetrapyrrole synthetic pathway 20
1-6.2 Regulation of tetrapyrrole synthesis 22
1-7 Objectives of this research 23
1-8 Flowchart of this research 24

Chapter 2 Materials and methods 25
2-1 Chemicals 25
2-2 Plant culture 25
2-3 Chlorophyll (a+b) concentration determination 27
2-4 Residual DBP analysis 28
2-5 Leaf tissue observation 30
2-6 Protein extraction 30
2-6.1 Protein extraction 30
2-6.2 Protein desalting 31
2-6.3 Two-dimensional gel electrophoresis 32
2-6.4 Digestion of in-gel protein 35
2-6.5 Mass spectrometry analyses of proteome 35

Chapter 3 Results and Discussion 39
3-1 Bok choy (Brassica rapa subsp. chinensis) 39
3-1.1 Outer and inner injury of Bok choy leaf 39
3-1.2 Concentration of chlorophyll and accumulation of DBP in Bok choy leaf 41
3-1.3 Proteome differences of Bok choy 45
3-2 Chinese cabbage (Brassica rapa var. chinensis) 54
3-2.1 Outer and inner injury of Chinese cabbage leaf 54
3-2.2 Concentration of chlorophyll and accumulation of DBP in
Chinese cabbage leaf 56
3-2.3 Proteome differences of Chinese cabbage 60

Chapter 4 Conclusions 72

References 74
1.Alt, J., Herrmann, R.G.., 1984. Nucleotide sequence of the gene for pre-apocytochrome f in the spinach plastid chromosome. Curr. Genet. 8, 551-557.
2.Anderson, N.L., Matheson, A.D., Steiner, S., 2000. Proteomics: applications in basic and applied biology. Curr. Opin. Biotechnol. 11, 408-412.
3.Ann, J.K., Ronald, R., Luca, C., 1992. Developmental Expression of Tomato Heat-Shock Cognate Protein 80. Plant Physiol. 100, 801-811.
4.ATSDR, 1990. AfTSaDR-di-n-butylphthalate. Toxicological Profile. Prepared by Life Systems Inc., under subcontract to: Clement Associates Inc., US Department of Health and Human Services, Public Health Service.
5.BASF, 1992. Study on the oral toxicity of dibutyl phthalate in Wistar rats. Administration via the diet over 3 months. Eastman–Kodak Company, 31S0449//89020.
6.Blüggel, M.G.K., Glandorf, J., Vagts, J., Reinhardt, R., Chamrad, D., Thiele, H., 2002. Proteinscape: an integrated bioinformatics platform for proteome analysis. Technical Report, Bruker Daltonics.
7.Campa, A., 1991. Biological roles of plant peroxidases: known and potential function. In Everse, J., Everse, K.E. and Grisham, M.B., Eds. Peroxidases in Chemistry and Biology. vol.Ⅱ, 25-50.
8.Carlo, Rosati, Alain, Cadic., Michel, Duron., Marie-Jose`phe, Amiot. Max, Tacchini., Stefan, Martens., Gert, Forkmann. 1998. Flavonoid metabolism in Forsythia flowers. Plant Science 139, 133-140.
9.Chakravati, D.N., Chakravati, B., Moutsatsos, I., 2002. Informatic tools for proteome profiling. Comput. Proteomics Suppl. 32, S4-15.
10.Chalmers, M.J., Gaskell, S.J., 2000. Advances in mass spectrometry for proteome analysis. Curr. Opin. Biotechnol. 11, 384-390.
11.Chang, B. V., Liao, C.S., Huang, P.C., Lee, C.C. 2004. Pollution investigation of PAEs in river water, river sediment and fish in Taiwan. The 3th Conference on Environmental Hormones and POPs, Taipei, Taiwan.
12.Chang, B.V., Liao, C.S., Yuan, S.Y., 2005. Anaerobic Degradation of Diethyl phthalate, Di-n-butyl phthalate, and Di-(2-ethylhexyl) phthalate from River Sediment in Taiwan. Chemosphere 58, 1601–1607.
13.Chan, P.K.L., Meek, M.E., 1994. Di-n-butyl phthalate evaluation of risks to health from environmental exposure in Canada. J. Environ. Sci. Health. 12, 257-68.
14.Chen, Z., Silva, H., Klessig, D.F., 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262, 1883-1886.
15.Chen, T., Kao, M.-Y., Tepel, M., Rush, J., Church, G.M., 2001. A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 8, 325-337.
16.Clark, K., Cousins, I.T., Mackay, D., Yamada, K., 2003. Observed concentration in the environment. In: Staples, C.A. (Ed). Phthalate esters. Springer-Verlag Berlin Heidelberg. 125-177.
17.CMA, 1999. Comments of the Chemical Manufacturers Association phthalate esters panel in response to request for public input on seven phthalate esters. Washington, DC: Chemical Manufacturers Association FR Doc, 99-9484.
18.Cornah, J.E., Terry, M.J., Smith, A.G.., 2003. Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci. 8, 224-230.
19.Dancik, V., Addona, T.A., Clauser, K.R., Vath, J.E., Pevzner, P.A., 1999. De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6, 327-342.
20.Droillard, M.J., Paulin, A., Massot, J.C., 1987. Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Physiol. Plant. 71, 197-202.
21.Dueck, Th.A., Dijk, C.J.Van., David, F., Scholz, N., Vanwalleghem, F., 2003. Chronic effects of vapour phase di-n-butyl phthalate (DBP) on six plant species. Chemosphere 53, 911-920.
22.Elsisi, A.E., Carter, D.E., Sipes, I.G., 1989. Dermal absorption of phthalate diesters in rats. Fundam. Appl. Toxicol. 12, 70-7.
23.Ema, M., Amano, H., Itami, T., Kawasaki, H., 1993. Teratogenic evaluation of di-n-butyl phthalate in rats. Toxicol. Lett. 69, 197-203.
24.Ema, M., Amano, H., Ogawa, Y., 1994. Characterization of the developmental toxicity of di-n-butyl phthalate in rats. Toxicology 86, 163-74.
25.Ema, M., Kurosaka, R., Amano, H., Ogawa, Y., 1995. Developmental toxicity evaluation of mono-n-butyl phthalate in rats. Toxicol. Lett. 78, 101-6.
26.Ema, M., Miyawaki, E., Kawashima, K., 1998. Further evaluation of developmental toxicity of di-n-butyl phthalate following administration during late pregnancy in rats. Toxicol. Lett. 95, 87-93.
27.Eng, J.K., McCormack, A.L., Yates, J.R., 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Am. Soc. Mass Spectrom. 5, 976-989.
28.Farzad, M., R., Griesbach, J., Hammond, M.R., Weiss, H.G., Elmendorf. 2003. Differential expression of three key anthocyanin biosynthetic genes in a color-changing flower, Viola cornuta cv. Yesterday, Today and Tomorrow. Plant Sci. 165, 1333-1342.
29.Fatoki, O.S., Vermon, F., 1990. Phthalate esters in rivers of the Greater Manchester area, UK. Sci. Total. Environ. 95, 227-232.
30.Fenyö, D., 2000. Identifying the proteome: software tools. Curr. Opin. Biotechnol. 11, 391-395.
31.Fleischmann, R., Adams, M., White, O., et al., 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 269, 496-512.
32.Fuqiang, C., Patrick, M.H., 1994. Nucleotide sequence and developmental expression of duplicated genes encoding protein disulfide isomerase in barley (Hordeum vulgare L.). Plant Physiol. 106, 1705-1706.
33.Gibbons, IR., Grimstone, AV., 1960. On the structure in certain flagellates. J. Biophys. Biochem. Cytol. 7, 697-716.
34.Gibson, R., Wang, M.J., Padgett, E., Beck, A.J., 2005. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids. Chemosphere 61, 1336-1344.
35.Gledhill, W.E., Kaley, R.G., Adams, W.J., Hicks, O., Michael, P.R., Saeger, V.W., LeBlanc, G.A., 1980. An environmental safety assessment of butylbenzyl phthalate. Environ. Sci. Technol. 14, 301-305.
36.Granick, S., 1965. The Heme and Chlorophyll Biosynthetic Chain. Biochemistry of Chloroplasts, edited by Goodwin, T.W., Vol.2, Academic Press, London and New York.
37.Gray, Jr. LE., Wolf, C., Lambright, C., Mann, P., Price, M., Cooper, RL., 1999. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p_-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat. Toxicol. Ind. Health. 15, 94-118.
38.Gray, T., Rowland, I., Foster, P., Gangolli, S., 1982. Species differences in the testicular toxicity of phthalate esters. Toxicol. Lett. 11, 141-7.
39.Hannay, J.W., Millar, D.J., 1986. Phytotoxicity of phthalate plasticisers. 1. Diagnosis and commercial implications. J. Exp. Bot. 37, 883-897.
40.Hardwick, R.C., Cole, R.A., Fyfield, T.P., 1984. Injury to and death of cabbage (Brassica oleracea) seedlings caused by vapours of di-butyl phthalate emitted from certain plastics. Ann. Appl. Biol. 105, 97-105.
41.Harwood, J.L. 1988. Fatty acid metabolism. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 39, 101-138.
42.Hellman, U., Wernstedt, C., Gonez, J., Heldin, C.H., 1995. Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451-455.
43.Hemming, I.V., Ann-Marie, H., Johan, M., 1981. Effects of di-n-butyl phthalate on the carrotenoid synthesis in green plants. Physiol. Plant. 53, 158-163.
44.Herring, R., Bering, C.L., 1988. Effects of phthalate esters on plant seedlings and reversal by a soil microorganism. Bull. Environ. Contam. Toxicol. 40, 626-632.
45.Hoagland, D.R., Arnon, D.I., 1950. The water culture method for growing plants without soil. Col. Agric. Exp. Stn. Circ. 347, 1-32.
46.Hoagland, M., Stephenson, M., Scott, J., Hecht, L., Zamecnik, P., 1958. A soluble ribonucleic acid intermediate in protein synthesis. J. Biol. Chem. 231, 241-256.
47.Hochstrasser, D.F., Harrington, M.G., Hochstrasser, A.C., Miller, M.J., Merril, C.R., 1988. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 173, 424-435.
48.Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., 1991. Handbook of Environmental Biodegradation Rates. Lewis Publishers, MI.
49.Ikuo, Nishida, Toshio, Beppu, Tomoaki, Matsuo, Norio, Murata. 1992. Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl,(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea. Plant Mol. Biol. 19, 711-713.
50.Imajima, T., Shono, T., Zakaria, O., Suita, S., 1997. Prenatal phthalate causes cryptorchidism postnatally by inducing transabdominal ascent of the testis in fetal rats. J Pediatr. Surg. 32, 18-21.
51.IPCS, 1997. Environmental health criteria 189 Di-n-butyl phthalate, ISBN 92 4 157189 6. Geneva: Health Organization.
52.Jaworski, Jan.G., Dusty, Post-beittenmiller, John B., Ohlrogge. 1993. Acetyl-acyl carrier protein is not a major intermediate in fatty acid biosynthesis in spinach. Eur. J. Biochem. 213, 981-987.
53.Jiao, Shunxing, Hilaire, Emmanuel, Guikema, James A., 2004. Identification and differential accumulation of two isoforms of the CF1-β subunit under high light stress in Brassica rapa. Plant. Physiol. Bioch. 42, 883-890.
54.Jones, A.M., Dangl, J.L., 1996. Logjam at the Styx: programmed cell death in plants. Trends Plant Sci. 1, 114-119.
55.Keys, D.A., Wallace, D.G., Kepler, T.B., Conolly, R.B., 2000. Quantitative evaluation of alternative mechanisms of blood disposition of di(n-butyl) phthlate and mono(n-butyl) phthalate in rats. Toxicol. Sci. 53, 173-84.
56.Krueger, R.J., Siegel, L.M., 1982. Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Biochemistry 21, 2892-2904.
57.Lacan, D., Baccou, J.C., 1998. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits. Planta. 204, 377-382.
58.Lamb, IV. JC., 1987. Reproductive effects of four phthalic acid esters in the mouse. Toxicol. Appl. Pharmacol. 88, 255-69.
59.Lancaster, J.R., Vega, J.M., Kamin, H., Orme-johnson, N.R., Orme-johnson, W.H., Krueger, R.J., Siegel, L.M., 1979. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J. Biol. Chem. 254, 1268-1272.
60.Longa, M.A.del., Rio, L.A., Palma, J.M., 1994. Superoxide dismutases of chestnut leaves Castanea sativa: characterization and study of their involvement in natural leaf senescence. Physiol. Plant. 92, 227-232.
61.MAFF. 1996, Food surveillance information sheet – phthalates in food. Joint Food Safety And Standards Group, vol. 1999, 9.
62.MAFF. 1998, Food surveillance information sheet – phthalates in infant formulae – follow-up survey. Joint Food Safety and Standards Group, vol. 1999, 13.
63.Marsman, D.S., 1995. NTP technical report on toxicity studies of dibutyl phthalate (CAS no. 84-74-2) administered in feed to F344 rats and B6C3F1 mice NIH Publication 95-3353. Research Triangle Park: National Toxicology Program.
64.Martinis, Susan A., Pierre, Plateau, Jean, Cavarelli, Catherine, Florentz, 1999a. Aminoacyl-tRNA synthetases: A new image for a classical family. Biochimie. 81, 683-700.
65.Martinis, Susan A., Pierre, Plateau, Jean, Cavarelli, Catherine, Florentz, 1999b. EMBO WORKSHOP REPORT Aminoacyl-tRNA synthetases: a family of expanding functions Mittelwihr, France, October 10–15, 1999. EMBO J. 17, 4591-4596.
66.McCormac, A.C., Terry, M.J., 2002. Loss of Nuclear Gene Expression during the Phytochrome A-Mediated Far-Red Block of Greening Response. Plant Physiol. 130, 402-414.
67.Mizzen, L.A., Chang, C., Garrels, J.I., Welch, W.J., 1989. Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J. Biol. Chem. 264, 20664-20675.
68.Motchoulski, Andrei, Emmanuel, Liscum., 1999. Arabidopsis NPH3: A NPH1 Photoreceptor-Interacting Protein Essential for Phototropism. Science 29, 961-964.
69.Murature, D.A., Tang, S.Y., Steinhardt, G., Dougherty, R.C., 1987. Phthalate esters and semen quality parameters. Biomed. Environ. Mass. Spectrom.14, 473-7.
70.Muszkat, L., Bir, L., Raucher, D., 1997. Identification of mixed O-phenyl alkyl phthalate esters in an agricultural land. Bull. Environ. Contam. Toxicol. 58, 348-355.
71.Mylchreest, E., Cattley, R.C., Foster, P.M., 1998. Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol. Sci. 43, 47-60.
72.Mylchreest, E., Sar, M., Cattley, R.C., Foster, PMD., 1999. Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol. Appl. Pharmacol. 156, 81-95.
73.Mylchreest, E., Wallace, D.G., Cattley, R.C., Foster, P., 2000. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di(n-butyl)phthalate during late gestation. Toxicol. Sci. 55, 143-51.
74.Noiva, R., Lennarz, W.J., 1992. Protein disulfide isomerase: a multifunctional protein resident in the lumen of the endoplasmic reticulum. J. Biol. Chem. 267, 3553-3556.
75.Peakall, D.B., 1975. Phthalate esters: occurrence and biological effects. Res. Rev. 54, 1-41.
76.Perkins, D.N., Pappin, D.J., Creasy, D.M., Cottrell, J.S., 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 20, 3551-3567.
77.Peterson, G. L., 1983. Determination of total protein. Methods Enzymol. 91, 95-119.
78.Reel, JR., Lawton, AD., Feldman, DB., Lamb, JC., 1984. Di(N-butyl) phthalate: reproduction and fertility assessment in CD-1 mice when administered in the feed. NTP-84-411: National Toxicology Program, National Institute of Environmental Health Sciences.
79.Reynolds, ES., 1963. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208-212.
80.Saillenfait, A.M., Payan, J.P., Fabry, J.P., Beydon, D., Langonne, I., Gallissot, F., 1998. Assessment of the developmental toxicity, metabolism, and placental transfer of di-n-butyl phthalate administered to pregnant rats. Toxicol. Sci. 45, 212-24.
81.Sakai, T., Wada, T., Ishiguro, S., Okada, K., 2000. RPT2. A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225-236.
82.Scott, R.C., Dugard, P.H., Ramsey, J.D., Rhodes, C., 1987. In vitro absorption of some o-phthalate diesters through human and rat skin. Environ. Health Perspect. 74, 223-7.
83.Shea, P.J., Weber, J.B., Overcash, M.R., 1982. Uptake and Phytotoxicity of Di-n-butyl Phthalate in Corn (Zea mays). Bull. Environm. Contam. Toxicol. 29, 153-158.
84.Shiba, Kiyotaka, Hiromi, Motegi, Paul, Schmimmel, 1997. Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains. Trends Biochem. Sci. 22, 453-457.
85.Smith, A.G.., 2005. Handout to the lecture “Tetrapyrrole Synthesis”. University of Cambridge.
86.Spurr, AR., 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultra. Res. 26, 31-43.
87.Staples, C.A., Peterson, D.R., Parkerton, T.F., Adams, W.J., 1997. The environmental fate of phthalate esters: a literature review. Chemosphere 35, 667-749.
88.Stewart, M.R., Alistair, S., Carol, E.K., Gillian, T., Gillian, M., Elizabeth, D., Robert, W.M., 2002. Phthalate and alkyl phenol concentrations in soil following applications of inorganic fertilizer or sewage sludge to pasture and potential rates of ingestion by grazing ruminants. J. Environ. Monit. 4, 142-148.
89.Tan, G.H., 1995. Residue levels of phthalate esters in water and sediment samples from the Klang River basin. Bull. Environ. Contam. Toxicol. 54, 171-176.
90.Terrence L., Graham. 1998. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 36, 135-144.
91.Welinder, K. G., 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2, 388-393.
92.Wilke, A., Rückert, C., Bartels, D., et al., 2003. Bioinformatics support for high-throughput proteomics. J. Biotech. 106, 147-156.
93.Wine, R.H. L., Barnes, L-H., Gulati, D.K., Chapin, R.E., 1997. Reproductive toxicity of di-n-butyl phthalate in a continuous breeding protocol in Sprague–Dawley rats. Environ. Health Perspect. 105, 102-7.
94.Wintermans, J.F., Mots, A.De., 1965. Spectrohotometric Characteristics of Chlorophylls a and b and their pheophytins in Ethanol. Biochem. Biophys. Acta. 109, 448-453.
95.Wolfe, N.L., Steen, W.C., Bums, L.A., 1980. Phthalate Ester Hydrolysis: Linear Free Energy Relationships. Chemosphere 9, 403-408.
96.Yano, K., Hirosawa, N., Sakamoto, Y., Katayama, H., Moriguchi, T., Joung, K.E., Sheen, Y.Y., Asaoka, K., 2002. Phthalate Levels in Beverages in Japan and Korea. Bull. Environ. Contam. Toxicol. 68, 463-469.
97.Yin, R., Lin, X.G., Wang, S.G., Zhang, H.Y., 2003. Effect of DBP/DEHP in vegetable planted soil on the quality of capsicum fruit. Chemosphere 50, 801-805.
98.Yuan, S.Y. , Liu, C. , Liao, C.S. , Chang, B.V., 2002. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere 49, 1295-1299.
99.Zhang, W., Chait, B.T., 2000. ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72, 2482-2489.
100.Zhang, Z., McElvain, J.S., 2000. De novo peptide sequencing by two-dimensional fragment correlation mass spectrometry. Anal. Chem. 72, 2337-2359.
第一頁 上一頁 下一頁 最後一頁 top