跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊賢
研究生(外文):Chun-Hsien Wu
論文名稱:塔塔加長期生態研究地區四種植生土壤之氮礦化及硝化作用
論文名稱(外文):Mineralization and Nitrification of Four Plant Soils in Ta-Ta-Chia Long-Term Ecological Research(LTER) Area
指導教授:王明光
指導教授(外文):Ming-kuang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:60
中文關鍵詞:銨態氮硝酸態氮氮礦化氮硝化速率
外文關鍵詞:ammoniumnitrateburied bag methodsnet mineralization ratenet nitrification rate
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無機態氮(硝酸態氮和銨態氮)是植物重要的養分之一,尤其對於不施肥的森林土壤更具重要性,而氮礦化及硝化現象則是重要氮肥力指標,但目前多用少量變數或單一時間(當月或當季)去研究礦化和硝化作用,忽略氣候因子的綜合影響。有鑑於無機態氮對於森林的重要性,故本研究目的為綜合多量、不同時間點的氣象因子,以進一步研究森林土壤的礦化和硝化作用。研究以台大實驗林-塔塔加之四主要植被區草原、鐵杉、雲杉和二葉松為試驗區,阿里山氣象站的氣象資料為材料,並透過逐步迴歸法篩選出最主要的影響氮礦化和硝化的氣候因子,後透過複因子迴歸建立推估模式,此外並檢視能否用土樣之pH、EC和土壤含水量等簡易偵測之項目研究土壤氮礦化及硝化作用。
試驗結果顯示利用氣候因子推估無機態氮含量,鐵杉和雲杉的銨態氮濃度有適合的氣候因子可以建立相關高的迴歸式,鐵杉的硝酸態氮主要與採樣當月~前一月的氣壓累積值有關(R2 =0.97),雲杉的硝酸態氮與採樣當月~前一月的濕度累積值有關(R2 =0.93),草原和二葉松的氮濃度主要與採樣前一~二月的雨量有關(R2 >0.90)。而利用氣候因子推估土壤礦化和硝化速率結果顯示,草原的礦化速率主要與採樣當月~前一月的溫差累積值有關(R2 =0.99),硝化速率主要與採樣當月的降水日數有關(R2 =0.92),鐵杉的礦化速率則和採樣前一個月的平均最大風速有關(R2 =0.99),雲杉和二葉松的礦化和硝化速率則和採樣前2個月的降雨比率有關(R2 >0.90)。利用pH、EC和含水量可建立鐵杉和雲杉的硝酸態氮和無機態氮濃度的迴歸式(R2 >0.74)。
Ammonium and nitrate are important plant nutrients of plants. Especially to forest soil of no fertilization. Nitrogen mineralization and nitrification are important index of fertility. But now people often use many number of variables or single period to study mineralization and nitrification, and ignore the synthetically infections of climate. Respecting the importance of inorganic nitrogen to forest, the aim of this study is using multiple kinds and variable climate factors, to discuss the mineralization and nitrification of forest soil further. The determination of experiment area according to the four main vegetation areas of Ta-Ta-Chia forest.

The test result showed that we could use the climatic factors to estimate the inorganic nitrogen content. The ammonium concentrations of hemlock and spruce soils have the suitable climatic factors to establish a high correlation regression equation.The nitrate concentration of hemlock soil is mainly related with the pressure accumulation from sampling month to preceding of sampling same month(R2 =0.97).The nitrate concentration of spruce soil is mainly related with the humidity accumulation from sampling month to preceding sampling same month(R2 =0.93).The nitrogen concentration of grassland and pine soil is mainly related with the precipitation preceding ~ first two month(R2 >0.90).We also could use the climatic factors to estimate the soil mineralization and the nitration rate.The net mineralization rate of grassland soil is mainly related with the temperature difference accumulation of the sampling month ~ preceding of the sampling month(R2 =0.99).The net nitrification rate of hemlock soil is mainly related with the rainy days of the sampling month(R2 =0.92).The net mineralization rate of hemlock soil is mainly related with the average maximum wind speed of the preceding of the sampling month(R2 =0.99).The net mineralization rate and net nitrification rate of spruce and pine soils are mainly related with the rains ratio of the first two of the sampling month(R2 =0.99).Using pH, EC and the water content, we may establish the regression equation of hemlock and spruce''s nitrate and inorganic nitrogen concentration.
中文摘要……………………………………………………………….Ⅰ
英文摘要……………………………………………………………….Ⅱ
目錄…………………………………………………………………….Ⅲ
表目錄………………………………………………………………….Ⅴ
圖目錄………………………………………………………………….Ⅵ
第一章、 前言.............................................1
1.1 氮對植物的重要性.................................1
1.2 氮的循環作用.....................................1
1.2.1 氮的外在循環作用.................................1
1.2.2 氮的內在循環作用.................................3
1.3 礦化及硝化作用的相關研究.........................4
1.4 研究目的.........................................5
第二章、 材料與方法.......................................7
2.1 研究背景介紹..........................................7
2.1.1 地理位置............................................7
2.1.2 地質................................................7
2.1.3 氣候................................................9
2.1.4 植被組成............................................9
(1)雲杉林區.............................................9
(2)草原區..............................................10
(3)鐵杉林區............................................10
(4)玉山箭竹區..........................................10
2.2 試驗方法說明.........................................11
2.2.1 土壤採集與處理.....................................11
(1)新鮮土壤採集........................................11
(2)埋藏袋孵育法........................................11
(3)風乾土壤............................................12
2.2.2 土壤基本性質測定...................................13
(1)pH和電導度的分析方法................................13
(2)CEC的分析方法.......................................13
(3)土壤有機質的分析方法(C/N).........................13
(4)可交換性陽離子和鹽基飽和度分析方法
(Percentage of base saturation, BS%)..................14
(5)土壤粒徑分析方法(Particle size analysis)和土壤質地等級.............14
(6)土壤含水量分析方法..................................15
(7)無機態氮的分析方法及轉化速率計算....................15
Ⅰ.銨態氮的分析..........................................15
Ⅱ.硝酸態氮的分析........................................16
2.2.3 資料處理分析方法...................................19
(1)時間序列法的運用....................................19
Ⅰ.氣象因子不隨時間變化呈相互獨立效應....................19
Ⅱ.氣象因子為隨時間呈累加(plus)效應....................20
(2)迴歸模式的建立......................................21
Ⅰ.迴歸和複迴歸..........................................21
Ⅱ. 逐步回歸選取預測變項與相關R2顯著檢視.................22
第三章、 結果與討論......................................24
3.1 本研究採集分析之探討.................................24
3.1.1 研究區域之氣候狀況之探討...........................24
(1)塔塔加氣象站........................................24
3.1.2 土壤基本理化性質...................................27
(1)pH和電導度(EC)....................................27
(2)全碳、全氮與碳氮比..................................29
(3)可交換性陽離子和鹽基飽和度..........................29
(4)陽離子交換容量(CEC)...............................31
(5)土壤質地組成和等級..................................31
(6)土壤水分組成百分比..................................32
(7)無機態氮的濃度及其轉化速率..........................33
Ⅰ. 草原區...............................................34
Ⅱ. 鐵杉林區.............................................34
Ⅲ. 雲杉林區.............................................34
Ⅳ. 二葉松林區...........................................35
3.1.3 利用土壤pH、EC和含水量推估土壤氮含量...............40
3.1.4 利用氣候、土壤溫度推估土壤氮含量...................41
3.1.5 利用氣候、土壤溫度推估土壤氮轉化速率...............44
3.2 綜合前人資料之研究比較...............................46
3.2.1 研究數據之敘述統計.................................46
(1)無機態氮的濃度......................................46
(2)氮的轉化速率........................................48
3.2.2 逐步迴歸探討.......................................50
(1)無機態氮濃度........................................50
(2)氮的轉化速率........................................52
第四章、 結論............................................54
參考文獻.................................................57
林珈吟。2003。塔塔加地區土壤中氮的硝化與礦化作用。國立台灣大學森林學研究所碩士論文。
孫海麟。2001。塔塔加地區草地及鐵杉林地的可礦化氮量。國立台灣大學農業化學研究所碩士論文。
張仲民。1987。普通土壤學。國立編譯館。
黃俊英。1991。多變量分析。華泰出版社。
魏聰輝。2002。塔塔加高山生態系表層土壤熱收支特性之研究。國立台灣大學森林學研究所碩士論文。
APHA. 1998. Cadmium reduction method. In M. A. H. Franson(eds.), Standard methods for the examination of water and wastewater. Washington, DC. U.S.A. p. 4-117-118.
Binkley, D., and S. C. Hart. 1989. The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10:57-112.
Bohn, H. L., B. L. Mcneal, and G. A. O’Connor. 1985. Soil chemistry. 2nd ed. John Wiley & Sons.
Bundy, L. G. and J. J. Meisinger. 1994. Nitrogen availability indices, In:R. W. Weaver et al.(eds)Methods of soil analysis. Part 2. Microbiological and Biochemical Properties. ASA and SSSA. Madison, WI, pp. 951-987.
Dorich, R. A. and D. W. Nelson. 1983. Direct colorimetric measurement of ammonium in potassium chloride extracts of soils. Soil Sci. Soc. Am. J. 47:833-836.
Eno, C.F. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil. Sci. Soc. Am. Proc. 24:277-279.
Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis, In:A Klute(eds.)Methods of Soil Analysis. Part 1. Physical and Mineralogical Mothods, 2nd ed. Soil Sci Soc. Am., Madison, WI, pp. 404-408.
Hart, S. C., J. M. Stark, E. A. Davidson, and M. K. Firestone. 1994. Nitrogen mineralization, immobilization and nitrification, In:(eds)Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, Vol. 5. Soil Sci Soc. Am., Madison, WI, pp. 985-1018.
Hopkins, W. G. 1999. Introduction to Plant Physiology John Wiley and Sons, New York.
Idol, T. W., P. E. Pope, and F. Ponder Jr. 2003. N mineralization, nitrification, and N uptake across a 100-year chronosequence of upland hardwood forests. Forest Ecology and Management 176:509-518.
Jaffe, D. A. 1992. The nitrogen cycle, In:G. V. Wolfe(eds.)Global Biogeochemistry Cycles. Academic Press, New York, pp. 263-284.
Keeney, D. R., and D. W. Nelson. 1982. Nitrogen inorganic forms. In:A. L. Page et al.(eds.)Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed. Soil Sci Soc. Am., Madison, WI, pp. 643-698.
Kozlowski, T. T. 1985. Tree growth in response to environment stresses. J. Arboric 11:97-111.
Mclean, E.O. 1982. Soil pH and lime requirement, In:A. L. Page et al.(eds.)Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties, 2nd ed. Soil Sci Soc. Am., Madison, WI, pp. 199-223.
Mulvaney, R. L. 1996. Nitrogen-Inorganic forms. In:D. L. Sparks et al.(eds.)Methods of Soil Analysis. Part 3. Chemical Methods. SSSA and ASA, Madison, WI, pp. 1123-1184.
Paul, C. A., and F. E. Clark. 1989. Soil microbiology and biochemistry. Academic Press. New York.
Rhoades, J. D. 1982. Cation exchangeable capacity, In:A. L. Page et al.(eds.)Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties, 2nd ed. Soil Sci Soc. Am., Madison, WI, pp. 149-157.
SAS Institute Inc. 1989. SAS/STAT User′s Guide for personal computers, version 6, Fourth Edition. SAS Institute Inc., Cary, N.C.
Son, Y., and I. K. Lee. 1997. Soil nitrogen mineralization in adjacent stands of larch, pine and oak in central Korea. Original article 54:1-8.
Ste-Marie, C., and D. Paré. 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biology and Biochemistry 31:1579-1589.
Thomas, G. W. 1982. Exchangeable cation. In:A. L. Page et al(eds.)Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed. Soil Sci Soc. Am., Madison, WI, pp. 149-157.
Wang, C. H., S. Q. Wan, X. R. Xing, L. Zhang, and X. G. Han. 2006. Temperature and soil moisture interactively affected soil net N mineralization in temperature grassland in Northern China. Soil Biology and Biochemistry 38:1101-1110.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊