跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:32
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:林連雄
Author (Eng.):Lian-Hsiung Lin
Title:近紅外線影像及發光二極體檢測系統偵測白米內部品質之研究
Title (Eng.):Determination of Intrinsic Qualities of Rice Using Near-Infrared Imaging and Light-Emitting Diodes Detecting Systems
Advisor:盧福明盧福明 author reflink
advisor (eng):Fu-Ming Lu
degree:Ph.D
Institution:國立臺灣大學
Department:生物產業機電工程學研究所
Narrow Field:工程學門
Detailed Field:機械工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2007
Graduated Academic Year:95
language:Chinese
number of pages:140
keyword (chi):近紅外線影像含水率蛋白質發光二極體稻米
keyword (eng):Near-infraredImagingMoisture contentProtein contentLight- emitting diodeRice
Ncl record status:
  • Cited Cited :7
  • HitsHits:338
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
於加工線上進行白米內部品質之即時檢測,可精確篩選稻米,並針對各級產品進行包裝及加工貯藏處理,為重要之產業技術。本研究目的為發展近紅外線影像系統,於稻米加工過程中,以非破壞性方式進行即時之團粒米成分分析。並進一步研製發光二極體(LED)檢測系統,針對單粒白米進行含水率量測,以探究進行單粒白米精確分級之可能性。
近紅外線影像系統之構造包括影像攝影裝置、濾鏡自動更換裝置及程式控制介面。影像攝影裝置使用近紅外線CCD攝影機,連接攝影機控制器。攝影機控制器可透過串列介面連接電腦,由電腦控制攝影機控制器之增益等參數,以控制拍攝影像之品質。將影像訊號藉由影像擷取卡數位化成640×480像素之影像送至個人電腦。由四盞鹵素燈組成光源,以具電壓控制器之直流光源穩定光源亮度。為擷取分光後之光譜影像及提高作業效率,設計可自動更換濾鏡之裝置,其構造包括濾鏡、濾鏡盤、步進馬達、步進馬達控制器及傳動機構。該裝置使用帶通濾鏡加裝於鏡頭下方,15組濾鏡之中心波長範圍為870 nm至1,014 nm。以多重線性迴歸(MLR)、部分最小平方迴歸(PLSR)及類神經網路(ANN)探討近紅外線分光光度計及近紅外線影像系統對白米含水率及蛋白質之檢測結果。為減少重複與多餘輸入值,以獲得較正確之神經網路,選用於MLR分析模式中,對白米水分及蛋白質含量具高度相關之波長,作為類神經網路之輸入值。
以近紅外線影像系統偵測白米含水率,檢測效果與近紅外線分光光度計相近。綜合比較光譜影像之驗證組採用三個模式所得之rval2、SEP、及RPD值,其分別介於0.942-0.952、0.435-0.479%及4.2-4.6。進一步探討近紅外線影像系統量測白米蛋白質之效能,結果rval2及SEP分別為0.769-0.806及0.266-0.294%。試驗結果顯示,近紅外線影像系統使用MLR、PLSR及ANN校正模式,對檢測白米水分及蛋白質含量具高預測能力,且其預測能力與紅外線分光光度計之檢測結果相近,可應用於白米含水率及蛋白質之非破壞性線上即時檢測作業。
為提昇白米分級之精確性,本研究並發展近紅外線LED檢測系統,以進行即時之線上單粒白米之含水率量測。系統之主要構造包括進料裝置、檢測裝置及訊號處理介面。檢測裝置以近紅外線LED為光源,矽偵測器為感測元件,用以量測單粒白米通過檢測裝置時之近紅外線穿透光譜。試驗用白米樣本品種為梗稻,校正用之78顆單粒白米樣本含水率範圍為10.34-22.37%,驗證用之60顆單粒白米樣本的含水率分佈範圍於10.50- 21.65%之間。本研究選用940、1,050及850 nm LED波長組合,所獲含水率校正模式之判定係數為0.706,預測模式之判定係數為0.624。此結果顯示,應用以近紅外線LED檢測系統進行線上即時量測白米含水率之作業具可行性。
One of the objectives of this research was to develop a near-infrared (NIR) imaging system that would detect rice intrinsic qualities nondestructively in real time rice processing lines. The sorting of a single rice kernel based on intrinsic qualities will precisely influence the classification and packaging process of rice. Therefore, the other objective of the research was to develop a rice moisture detecting system for single rice kernel.
The developed NIR imaging system consists mainly of a NIR CCD camera which is coupled to a camera controller. A frame grabber board was used to receive the video signal from the camera. A filter exchange device consisted of a filter adapter, a filter holder, and a stepper motor module that was combined with the CCD camera. The filters were installed in a filter holder. The filter exchange device was controlled by a stepper motor in order to rotate automatically such that the NIR imaging system can effectively acquire multi-spectral images. In this work, calibration methods including multiple linear regression (MLR), partial least squares regression (PLSR), and artificial neural network (ANN) were used in both of near-infrared spectrometer (NIRS) and NIR imaging system to determine the moisture and protein contents of rice. Comprehensive performance comparisons among MLR, PLSR, and ANN approaches were conducted. To reduce repetition and redundancy in the input data and obtain a more accurate network, six and five significant wavelengths selected by the MLR model, which had high correlation with the moisture and protein contents of rice, were used as the input data of the ANN.
The performance of the developed system was evaluated via a series of experimental tests for rice moisture and protein contents. Utilizing three models of MLR, PLSR, and ANN, the rice moisture analysis results of rval2, SEP, and RPD for the validation set were within 0.942-0.952, 0.435-0.479%, and 4.2-4.6, respectively. The prediction of protein content with the NIR imaging system by employing the same three models achieved rval2 of 0.769-0.806, and SEP of 0.266-0.294%, respectively. While compared with a commercial NIRS, experimental results showed that the performance of the NIR imaging system was almost the same as that of NIRS. Using the developed NIR imaging system, all of the three different calibration methods (MLR, PLSR, and ANN) provided satisfactory prediction of rice moisture and protein content. These results indicated that the NIR imaging system developed in this research can be used as a device for the measurement of rice moisture and protein content.
A NIR light-emitting diode (LED) individual rice kernel moisture content measurement system contains NIR LED, rice moving chute, detecting units, and signal processing unit was also developed in this research. A calibration set which contained 78 rice kernels with moisture content ranged from 10.34-22.37% was used to calibrate the system and to develop a prediction equation. Another set of rice which containing 60 kernels with moisture content range of 10.50-21.65% was used for validation. The coefficients of determination for the calibration and validation sets based on 940, 1,050 and 850 nm LED were 0.706 and 0.624, respectively. The results indicated that the developed NIR LED measurement system can be utilized on the rice processing line.
誌謝……………………………………………………………… i
摘要……………………………………………………………… ii
Abstract………………………………………………………… iv
目錄……………………………………………………………… vi
圖目錄…………………………………………………………… x
表目錄…………………………………………………………… xiii
符號說明…………………………………………………………… xv
第壹篇 緒論及文獻探討………………………………… 1
第一章 緒論……………………………………………… 1
第二章 文獻探討…………………………………………… 3
2.1 稻米的產量及成分……………………………… 3
2.1.1稻米的產地分佈與產量…………………… 3
2.1.2稻米結構與化學成分.......................4
2.1.3影響米飯食味的主要成分……………………. 6
2.2 穀物成分檢測…………………………………….. 7
2.2.1化學分析法檢測穀物成分…………………. 7
2.2.2近紅外線分光光度計分析穀物成分……. 10
2.2.3以機械視覺分析農產品品質之應用…………. 12
2.2.4近紅外線影像技術於農產品品質分析之研究… 13
2.3 近紅外線原理及分析方法………………………….. 14
2.3.1光譜分析的基本原理………………………….. 14
2.3.2近紅外線光譜之定量分析……………………. 17
2.3.3校正方程式之建立…………………………... 20
2.3.4校正方程式之性能評估的相關統計定義……. 35
第貳篇 發展近紅外線影像系統量測白米品質……………... 37
第三章 近紅外線影像系統之研製……………………….. 37
3.1前言………………….........................37
3.2材料與方法……………………….......….. 38
3.2.1近紅外線影像系統…………………………... 38
3.2.2影像校準和近紅外線影像資料分析………….. 46
3.2.3近紅外線分光光度計光譜資料之取得……….. 49
3.2.4模式建立-多重線性迴歸(MLR)…………… 49
3.3結果與討論……………………………………….. 50
3.3.1近紅外線光譜分析-波長選擇………………… 51
3.3.2近紅外線影像分析結果……………………….. 56
3.3.3 影像系統白米含水率自動偵測介面………… 58
3.4結論………………………………………………… 59
第四章 不同校正模式對近紅外線影像系統檢測白米含水率性能之
影響..........................................61
4.1前言………………………………………….…… 61
4.2材料與方法………………………………….. 64
4.2.1白米樣本………………………....... 64
4.2.2水分含量分析……………………………… 64
4.2.3近紅外線分光光度計…………………….. 64
4.2.4近紅外線影像系統之設計…………………. 65
4.2.5影像擷取及處理…………………………… 69
4.2.6模式建立……………………………….. 70
4.3 結果與討論……………………………... 72
4.3.1多重線性迴歸(MLR)分析白米含水率……… 74
4.3.2部份最小平方迴歸(PLSR)分析白米含水率… 77
4.3.3類神經網路(ANN)分析白米含水率………… 79
4.4結論.......................................85
第五章 近紅外線影像系統檢測白米蛋白質含量之研究…… 86
5.1前言……………………………….....…… 86
5.2材料與方法…………...........…….. 88
5.2.1白米樣本……....……………………. 88
5.2.2蛋白質分析……….…………………. 88
5.2.3近紅外線分光光度計…….…………….. 88
5.2.4近紅外線影像系統之設計……………………. 88
5.2.5影像資料處理與模式建立……………………. 91
5.3 結果與討論…………………....…….. 94
5.3.1多重線性迴歸(MLR)分析白米蛋白質……… 97
5.3.2部份最小平方迴歸(PLSR)分析白米蛋白質… 100
5.3.3類神經網路(ANN)分析白米蛋白質……….. 103
5.4 結論……………………................ 109
第參篇 線上白米內部品質自動偵測系統之研製……...... 110
第六章 近紅外線發光二極體(LED)檢測系統量測單粒白米含水
率之研究......................................110
6.1前言……...........……............ 110
6.2材料與方法……………………………….. 112
6.2.1單粒白米內部品質檢測系統…………………… 112
6.2.2訊號處理………………………………………… 118
6.2.3單粒米樣本挑選及含水率量測………………… 122
6.3結果與討論……………………………………….. 122
6.3.1近紅外線光譜分析-LED波長選擇…………... 124
6.3.2近紅外線LED偵測白米含水率之分析結果..... 125
6.3.3近紅外線 LED偵測白米含水率訊號處理介面.. 127
6.4結論…………………………………………… 129
第肆篇 結論.................................... 130
第七章 結論與建議………………………………………….. 130
7.1結論………………………………………… 130
7.2建議………………………………………………… 131
參考文獻…………………………………………………………. 132
1.吳永培。2001。影響食味良劣之因素及利用近紅外光線光譜儀分
析米質之研究。博士論文。台北:國立臺灣大學農藝學研究所。
2.吳景陽。1988。稻米澱粉。食品工業20(7): 17-23。
3.宋勳。1991。臺灣稻米品質之研究。台中:台灣省台中區農業改良
場特刊第24號。
4.李汪盛。1998。以近紅外線分光光度計偵測稻米之成分及食味。博
士論文。台北:國立台灣大學農業機械工程學研究所。
5.汪呈因。1974。稻作學與米。初版。台北:徐氏基金會。
6.周家琳。2006。應用近紅外光技術檢測單粒白米含水率。碩士論
文。台北:國立台灣大學生物產業機電工程學研究所。
7.林韶凱、盧虎生。2004。稻米品質之形成及蛋白質功能。科學農
業 53(3,4): 76-83。
8.邵遵文、郭寶錚。2004。不同統計方法對紅外線光譜資料預測白米
粉之破裂黏度的模擬研究。中華農學會報 5(2): 129-143。
9.洪海珠、宋勳。2005。穀物品質與分級。台灣農家要覽農作篇(一),21-24。台北:豐年社。
10.洪海珠、楊嘉凌、許志盛、劉瑋婷。1999。稻米蛋白質含量之變
異。台中區農業改良場研究彙報。65: 1-11。
11.夏賀元康、仲村彰敏、河野澄夫。2003。近赤外分光法による玄
米の選別関する研究-玄米一粒成份自動選別機の高速改良と測定
精度の檢証-。農業機械學会誌 65(3): 107-113。
12.野村信使、竹川昌和。1995。稻作部50年のあゆみ,77-78。北海
道立中央農業試驗所。
13.陳加忠、雷鵬魁、曹之祖。1995。稻穀含水率測定烤箱技術之研
究。農業工程學報 42(2): 59-70。
14.陳世銘、張文宏、謝廣文。1998。果汁糖度檢測模式之研究。農
業機械學刊 7(3): 41-60。
15.陳陵援。1989。儀器分析。六版,39-93。台北: 三民。
16.陳貽倫。1995。影響稻米品質的因素。稻穀倉儲加工作業技術手
冊。第二輯稻米倉儲,1-26。台北:農業機械化研究發展中心。
17.彭智平、李汪盛、蕭介宗。1997。以近紅外線分光度計偵測影響
稻米食味之主要成分。農業工程學報 43(2): 56-72。
18.曾瑞田。2001。小型近紅外光穀物水份測定器之研製。碩士論
文。台北:國立臺灣大學生物產業機電工程學研究所。
19.馮丁樹。1994。稻穀乾燥原理。稻穀倉儲加工作業技術手冊。第
一輯稻穀乾燥,1-12。台北:農業機械化研究發展中心。
20.馮丁樹。1998。穀物乾燥中心推行成果專刊。1-20。台北:農業
機械化研究發展中心。
21.萬一怒、林建銘、廖家興、周瑞仁。1997。胴裂米反光特性的分
析與應用。農業機械學刊6(3): 89-99。
22.萬一怒、廖家興。1996。糙米外觀品質影像特徵之研究。農業機
械學刊 5(2): 49-63。
23.萬一怒。1998。糙米品質自動檢測分級系統-(一)檢測系統之研
製。農業機械學刊 7(1): 59-73。
24.萬一怒、溫惠雯。1998。糙米品質自動檢測分級系統-(二)糙米
外觀品質檢測之研究。農業機械學刊 7(2): 13-27。
25.農業年報。2004。我國加入WTO後農業發展情勢與因應措施執行情
形。台北:行政院農業委員會。
26.農業統計年報。2005。作物生產:稻米。台北:行政院農委會。
27.劉民卿、蕭介宗。1995。以近紅外線光譜儀感測稻米之含水率及
蛋白質含量。農業機械學刊4(3): 1-14。
28.劉昌群、彭智平、蕭介宗。1997。稻米近紅外線光譜之變數分
析。農業機械學刊6(3): 9-19。
29.盧守耕。1958。稻作學。初版, 47-51,76。台北:國立編譯
館。
30.聯合國糧農組織「農業資料庫」。http://faostat.fao.org/site/291/default.aspx。
31.AOAC. 1984. Official method of analysis of the
association of official analytical chemists 14th ed.
Association of Official Analytical Chemist.
32.Archibald, D. D., C. N. Thai, and F. E. Dowell. 1998.
Development of short-wavelength near-infrared spectral
imaging system for grain color classification. Proc.
SPIE 3543: 189-198.
33.Baker, D. 1979. Report on cereal foods. Journal of the
AOAC 62(2):369-370.
34.Bellon, V., G. Rabatel, and C. Guizard. 1992. Automatic
sorting of fruit: Sensors for the future. Food Control
1: 49-54.
35.Birth, G. S. and H. G. Hecht. 1990. The physics of near-
infrared reflectance. In “Near-Infrared Technology in
the Agriculture and Food Industries”, ed. by Williams,
P. C. and K. H. Norris, 8-10. St. Paul: American
Association of Cereal Chemists.
36.Bowden, P. J. 1984. Comparison of three routine oven
method for grain moisture content determination. J.
Stored Prod. Res. 20(2): 97-106.
37.Bull, C. R. 1991. Wavelength selection for near-infrared
reflectance moisture meters. J. Agric. Eng. Research.49
(2):113-125.
38.Campbell, M. R., T. J. Brumm, and D. V. Glover. 1997.
Whole grain amylose analysis in maize using near-
infrared transmittance spectroscopy. Cereal Chem. 74
(3):300-303.
39.Champagne, E. T., K. L. Bett-Garber, C. C. Grimm, A. M.
McClung, K. A. Moldenhauer, S. Linscombe, K. S.
McKenzie, and F. E. Barton. 2001. Near-infrared
reflectance analysis for prediction of cooked rice
texture. Creal. Chem. 78(3): 358-362.
40.Chen, C. 2001. Moisture measurement of grain using
humidity sensors. Trans. ASAE 44(5): 1241-1245.
41.Chen, C. 2003. Evaluation of air oven moisture content
determination methods for rough rice. Biosystems
Engineering 86(4): 447-457.
42.Chen, Y. R., S. R. Delwiche, and W. R. Hruschka. 1995.
Classification of hard red wheat by feedforward
backpropagation neural networks. Cereal Chem. 73(3): 317-
319.
43.Cogdill, R. P., C. R. Hurburgh, and G. R. Rippke. 2004.
Single-kernel maize analysis by near- infrared
hyperspectral imaging. Trans. ASAE 47(1): 311-320.
44.Delwiche, S. R. 1993. Measurement of single-kernel wheat
hardness using near-infrared transmittance. Trans. ASAE
36(5): 1431-1437.
45.Delwiche, S. R. 1995. Single wheat kernel analysis by
near-infrared transmittance: protein content. Cereal
Chem. 72(1): 11-16.
46.Delwiche, S. R. 1998. Protein content of single kernels
of wheat by near-infrared reflectance spectroscopy. J.
Cereal Sci. 27: 241-254.
47.Delwiche, S. R., K. S. McKenzie, and B. D. Webb. 1996.
Quality characteristics in rice by near-infrared
reflectance analysis of whole-grain milled samples.
Cereal Chem. 73(2): 257-263.
48.Delwiche, S. R., M. M. Bean, R. E. Miller, B. D. Webb,
and P. C. Williams. 1995. Apparent amylose content of
milled rice by near-infrared reflectance
spectrophotometry. Cereal Chem. 72(2): 182-187.
49.Dou, Y., Y. Sun, Y. Q. Ren, and Y. L. Ren. 2005.
Artificial neural network for simultaneous determination
of two components of compound paracetamol and
diphenhydramine hydrochloride powder on NIR
spectroscopy. Anal. Chim. Acta 528: 55-61.
50.Du, C. J. and D. W. Sun. 2004. Recent developments in
the applications of image processing techniques for food
quality evaluation. Trends in Food Science & Technology
15(2004): 230-249.
51.Glowa, W. 1974. Zirconium dioxide, a new catalyst, in
the Kjeldahl method for total nitrogen determination.
Journal of the AOAC 57(5):1228-1230.
52.Grabe, D. F. 1989. Measurement of seed moisture in
“Seed Moisture”. CSSA Special Publication No.14.
Madison, WI: Crop Science Society of American.
53.Hagan, M. T. and M. B. Menhaj. 1994. Training
feedforward networks with the Marquardt algorithm. IEEE
Trans. on Neural Networks 5(6): 989–993.
54.Haykin, S. 1999. A comprehensive foundation. In “Neural
networks”. 2nd ed. 139-165. Prentice Hall, New York.
55.Helland, I.S. 1988. On the structure of partial least
squares regression. analysis. Communications in
statistics (sim and comp), 17, 58-607.
56.Himmelsbach, D. S., F. B. Barton, II., A. M. McClung,
and E. T. Champagne. 2001. Protein and apparent amylose
contents of milled rice by NIR-FT/Raman spectroscopy. Cereal Chem. 78(4): 488-492.
57.Hoque, E., P. J. Seiditz, and H. K. Seiditiz. 1988. Relationship between discoloration and histological changes in leaves of tree affected by forest decline. Rem. Sens. Environ. 26: 171-184.
58.Hruschka, W. R. 1990. Data analysis: wavelength selection methods. In “Near-Infrared Technology in the Agriculture and Food Industries”, ed. by Williams, P. C. and K. H. Norris, 35-40. St. Paul: American Association of Cereal Chemists.
59.Kawamura, S., K. Takekura, and K. Itoh. 2002. Accuracy of near-infrared transmission spectroscopy for determining rice constituent contents and improvement in the accuray. ASAE Meeting Paper No. 023006. St. Joseph, Mich.: ASAE.
60.Kawamura, S., M. Natsuga, and K. Itoh. 1997. Visual and near-infrared reflectance spectroscopy for rice taste evaluation. Trans. ASAE 40(6): 1755-1759.
61.Kawamura, S., M. Natsuga, and K. Itoh. 1999. Determination of undried rough rice constituent content using near-infrared transmission spectroscopy. Trans. ASAE 42(3): 813-818.
62.Kawamura, S., M. Natsuga, and K. Itoh. 2001. Development of automatic rice-quality inspection system. IFAC/CIGR 4 International Workshop on Artificial Intelligence in Agriculture. 71-76.
63.Kawamura, S., M. Natsuga, K. Takekura, and K. Itoh. 2003. Development of an automatic rice-quality inspection system. Computers and Electronics in Agriculture 40: 115-126.
64.Kennedy, G. and B. Barbara. 2003. Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem. 80(4): 589-596.
65.Kim, S. M., A. M. Lefcourt, K. Chao, Y. R. Chen, I. Kim, and D. E. Chan. 2002. Multispectral detection of fecal contamination on apple based on hyperspectral imagery: Part I. application of visible and near-infrared reflectance imaging. Tran. ASAE 45(6): 2027-2037.
66.Kleynen, O., V. Leemans, and M.-F. Destain. 2005. Development of a multi-spectral vision system for the detection of defects on apples. J. Food Engineering 69(2005): 41-49.
67.Lamb, D. T. and Jr. C. R. Hurburgh. 1991. Moisture determination in single soybean seeds by near-infrared transmittance. Trans. ASAE 34(5): 2123-2129.
68.Li, W. S. and J. T. Shaw. 1997. Determining the fat acidity of rough rice by near-infrared reflectance spectroscopy. Cereal Chem. 74(5): 556-560.
69.Lin. L. H., F. M. Lu, and Y. C. Chang. 2006. Development of a near-infrared imaging system for determination of rice moisture. Cereal Chem. 83(5):498-504.
70.Liu, P., Liang, Y. L. Zhang, and R. Yu. 1996. Artificial neural networks applied in the analysis of chemical data (1) – approximation for over-fitting. J. Chin. Chem. 17: 861-865.
71.Liu, W., Y. Tao, T. J. Siebenmorgen, and H. Chen. 1998. Digital image analysis method for rapid measurement of rice degree of milling. Cereal Chem. 75(3): 380-385.
72.Mark, H. 1991. Principles and practice of spectroscopic calibration, 112-113. John Wiley, New York.
73.Marshall, W. E. and J. I. Wadsworth. 1994. Introduction. In “Rice Science and Technology”. ed. by Marshall, W. E. and J. I. Wadsworth, 1-15. Marcel Decker, New York.
74.Martens, H. and T. Naes. 1989. Methods for calibration. In “Multivariate calibration”. John Wiley & Sons, New York.
75.Martin, M. and M. A. Fitzgerald. 2002. Proteins in rice grains influence cooking properties. Journal of Cereal Science 36(3):285-294.
76.Miller, B. K., and M. J. Delwiche. 1990. Spectral analysis of peach surface defects. ASAE Paper No. 906040. St. Joseph, MI: ASAE.
77.Muramoto, A., K. Kato and Y. Morio. 2001. Moisture distribution image of grain layer surface using multi-wavelength near 970nm. 3rd IFAC/CIGR Workshop on Control Applications in Post-Harvest and Processing Technology. 229-232.
78.Murray, I. and P. C. Williams. 1990. The physics of near-infrared reflectance. In “Near-Infrared Technology in the Agriculture and Food Industries”, ed. by Williams, P. C. and K. H. Norris, 17-24. St. Paul: American Association of Cereal Chemists.
79.Natsuga, M. and S. Kawamura. 2006. Visible and near-infrared reflectance spectroscopy for determining physicochemical properties of rice. Trans. ASEA 49(4): 1069-1076.
80.Noomhorm, A., and L. R. Verma, 1982. A comparison of microwave, air oven and moisture meters with standard method for rough rice moisture determination. Trans. ASAE 25(6): 1464-1470.
81.Pearson, T. C., D. T. Wicklow, E. B. Maghirang, F. Xie, and F. E. Dowell. 2001. Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy. Tran. ASAE 44(5): 1247-1254.
82.Ridgeway, C., and J. Chambers. 1998. Detection of insects inside wheat kernels by NIR imaging. J. Near-Infrared Spectroscopy 6: 115-119.
83.Shadow, W. and A. Carrasco. 2000. Practical single-kernel NIR/Visible analysis for small grains. Cereal Foods World 45(1):16-18.
84.Shearer, S. A. and F. A. Payne. 1990. Color and defect sorting of bell peppers using machine vision. Trans. ASAE 33(6): 2045-2055.
85.Shenk, J. S., J. Workman and M. O. Westerhaus. 1992. Application on NIR spectroscopy to agriculture products. In “Handbook of Near-Infrared Analysis”. ed. by D. A. Burns and E. W. Ciurczak, 383-427. New York: Marcel Dekker.
86.Simits, J. R. M., W. J. Melssen, L. M. C. Buydens, and G. Kateman. 1994. Using artificial neural netwoeks for solving chemical problems Part I. Multi-layer Feed-Forward Netwroks. Chemom. Intell. Lab. Syst. 22: 165-189.
87.Sitakalin, C., and J. F. C. Meullenet. 2001. Prediction of cooked rice texture using an extrusion test in combination with partial least squares regression and artificial neural networks. Cereal Chem. 78(4): 391-394.
88.Sugiyama, J. 1999. Visualization of sugar content in the flesh of a melon by near-infrared imaging. J. Agric. Food Chem. 47: 2715-2718.
89.Tao, Y., Heinemann. P. H., Vargheses. Z., Morrow, C. T., and Sommer, H. J. III. 1995. Machine vision for color inspection of potatoes and apples. Tran. ASAE 38: 1555-1561.
90.Tkachuk. R. 1987. Analysis of whole grains by near-infrared reflectance. In “Near-infrared technology in the agricultural and food industries.” Ed. Williams and Norris, 233-240. St. Paul: American Association of Cereal Chemists.
91.Tsuta, M., J. Sugiyama and Y. Sagara. 2002. Near-infrared imaging spectroscopy based on sugar absorption band for melons. J. Agric. Food Chem. 50: 48-52.
92.Upchurch, B. L., J. A. Throop, and D. J. Aneshansley. 1994. Influence of time, bruise type, and severity on near-infrared reflectance from apple surface for automatic bruise detection. Tran. ASAE 37(5): 1571-1575.
93.Villareal, C. P., N. M. De La Cruz, and B. O. Juliano. 1994. Rice amylose analysis by near-infrared transmittance spectroscopy. Cereal Chem. 71(3): 292-296.
94.Wan, Y. N. 2002. Kernal handling performance of an automatic grain quality inspection system. Tran. ASAE 45(2): 369-377.
95.Wan, Y. N., C. M. Lin, and J. F. Chiou. 2002. Rice quality classification using an automatic grain quality inspection system. Tran. ASAE 45(2): 379-387.
96.Webb, B. O. 1991. Rice quality and grades. In “Rice Utilization”, ed. Luh, B. S., 89-116. New York: Van Nostrand Reinhold.
97.Wigger, W. D., M. R. Paulsen, J. B. Litchfield and J. B. Sinclair. 1988. Classification of fungal-damaged soybeans using color image processing. ASAE Paper No. 3045-3053.
98.Williams, P. C. and K. H. Norris. 1990. Qualitative application of near-infrared reflectance spectroscopy. In “Near-Infrared Technology in the Agricultural and Food Industries”. ed., by P. C. Williams and K.H. Norris. St. Paul:American Association of Cereal Chemists.
99.Williams, P. C., and D. C. Sobering. 1993. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grain and seeds. J. Near Infrared Spectroscopy 1:25-32.
100. Yadav, B. K. and V. K. Jindal. 2001. Monitoring milling quality of rice by image analysis. Computers and Electronics in Agriculture 33: 19-33.
101. Yamashita, R. 1993. New technology in grain postharvesting, Farm Machinery Industry Research Corp., Tokyo Japan.
102. Zwiggelaar, R., Q. Yang, G. P. Eva, and R. B. Christine. 1996. Use of information and machine vision for bruise detection on peaches and apricots. J. Agric. Eng. Research 63: 323-332.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
system icon system icon