跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/25 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴秋吉
研究生(外文):Chiu-Chi Lai
論文名稱:封閉迴圈高輸出式微流道PCR晶片與系統之開發
論文名稱(外文):Development of a Closed Loop High-Throughput Microfluidic PCR Chip and System
指導教授:朱元南朱元南引用關係
指導教授(外文):Yuan-Nan Chu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:73
中文關鍵詞:聚合酶連鎖反應毛細管電泳PDMS微流道
外文關鍵詞:Polymerase chain reaction(PCR)Capillary electrophoresisPDMSmicrofludic channel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:586
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以機械驅動方式同步在多組閉迴圈連續流式(closed loop flow type)晶片,實現聚合酶連鎖反應(PCR)高輸出之機構。本研究利用聚二甲基矽氧烷(PDMS)具有彈性之特性做為聚合酶連鎖反應(PCR)之晶片,利用滾輪擠壓PDMS晶片上的微流道,可精準控制微流道中流體之流動,更突破以往連續流式PCR系統只在單一微流道內表現多輸出(high-throughput),但可能造成反應物二次汙染的問題。機械驅動系統之設計以一組滾輪同步擠壓四個晶片,有效改善同步執行連續流式PCR系統佔空間問題,節省多輸出連續流式PCR系統需多組溫控模組成本,更以自動化方式同步完成反應物注入與取出,簡化操控反應物之注入與取出繁雜之過程。
本研究利用精密雕刻機,以PMMA為材料,製作寬300μm、100μm微流道之晶片母模,以含有微粒子與氟化物之物質研磨處理後,降低母模表面粗糙度。將PDMS灌入PMMA母模所翻製之晶片,利用O2電漿 (plasma oxidizer)活化玻璃與PDMS之表面後接合以得到低成本,製作快速且耐用性高、可拋棄式晶片之優點。經實驗證明此封閉迴圈式多輸出微流道PCR系統,可同步驅動兩組容量為13.1μl之晶片,完成PCR循環時間為20分鐘,成功複製285.RI.FZ.之DNA序列。這目前的裝置容易發展成全自動注入、循環、取出裝置,和增加即時檢測(real time)功能。因此這裝置將提供高效率的聚合酶連鎖反應。
This research has developed a novel disposable closed-loop PCR chip which allows non-restricted number of thermal cycles on a small footprint. The fluid in the microchannel of the PCR chip is driven by mechanically compressing the microchannel using wheels pressing on the channel in only one direction to precisely control the flow to loop through three temperature zones. An automatic driving mechanism is also developed to achieve high throughput by driving multiple chips at the same time on a single thermal platform. The PCR chip is made by bonding a PDMS top layer to a glass substrate. The PDMS top layer is casted on a PMMA mold. The channel pattern on the mold is machined on a CNC machine then furbished by hand. The PDMS cover is then treated by O2 plasma and bond to the glass substrate. The microchannel is 300 μm wide, 100 μm high, with a total loop length of 282.24 mm to contain about 13.1 μl of fluid when full. Fluid to be processed is simply dropped onto a well of the I/O port and then taken into the channel loop automatically by the driving mechanism. When the PCR process completes, the fluid is again released through the same port. Simultaneous PCR amplification results have been successfully demonstrated on two chips. The reported PCR chip is the first flow-type PCR chip that could fully prevent cross contamination within the microchannel.
誌 謝 i
摘 要 ii
ABSTRACT iii
目 錄 iv
圖目錄 vii
表目錄 xi
第一章 前言與研究目的 1
1.1 研究背景 2
1.2 研究目的 3
第二章 文獻探討 4
2.1 微型晶片 4
2.2 PCR晶片種類 5
2.3 連續流PCR驅動方式 9
2.4 晶片材質種類 10
2.5 PCR加熱系統 12
2.6 高輸出PCR 13
2.7 整合式PCR 14
第三章 研究方法與原理 16
3.1 晶片設計與製作 17
3.2 機械力驅動PCR 20
3.3 溫度控制系統 24
3.4 PCR樣本準備 25
3.5 PCR產物分析 26
第四章 結果與討論 28
4.1 晶片母模表面平整度 28
4.2 溫度控制系統 31
4.3 滾輪驅動控制 33
4.4 滾輪寬度影響 34
4.5 機構平台精度問題 36
4.6 流速對PCR 產量影響 37
第五章 結論 40
參考文獻 42
附錄一 矽膠管驅動平台硬體設計 46
矽膠管驅動平台硬體設計 46
附錄二 圓盤滾動式平台硬體設計 49
晶片之設計 50
SU-8製程 52
清洗玻璃 55
PDMS翻模 56
精密雕刻製程 59
附錄三 聚合酶酵素連鎖反應基本原理 68
影響聚合酶酵素連鎖反應的變數 69
附錄四 直線往復式平台硬體設計 71
[1]余文華。2002。快速聚合酵素連鎖反應系統之開發與研究。碩士論文。台北市:國立臺灣大學機械工程學研究所。
[2]林旻翰。2005。聚合酶連鎖反應高分子元件之設件。碩士論文。台北市:國立臺灣大學應用力學研究所。
[3]陳育堂。2003。微流道結構之製造與分析。博士論文。台北縣:私立淡江大學機械與機電工程研究所。
[4]楊舜升。2003。UV-LIGA應用於生物晶片之製程研究。碩士論文。嘉義市:國立中正大學機械工程研究所。
[5]馮丁樹。2004。機動學。全華科技圖書股份有限公司。
[6]Chou , C.F.,R. Changrani, P. Roberts, D. Sadler, J. Burdon, F. Zenhausern, S. Lin , A. Mulholland , N. Swami , R. Terbrueggen. 2002. A miniaturized cyclic PCR device—modeling and experiments. Microelectronic Engineering 61–62 921–925.
[7]Curcio, M. and J. Roeraade. 2003. Continuous Segmented-Flow Polymerase Chain Reaction for High-Throughput Miniaturized DNA Amplification. Anal. Chem. 75: 1-7.
[8]Chen, Z, S. Qian, W. R. Abrams, D. Malamud, and H. H. Bau. 2004. Thermosiphon-Based PCR Reactor: Experiment and Modeling. Anal. Chem. 76: 3707-3715
[9]Chen, Z., S. Qian, W. R. Abrams, D.Malamud and H. H. Bau. 2004.Thermosiphon-Based PCR Reactor: Experiment and Modeling. Anal. Chem. 76: 3707-3715
[10]Chen, J., M. Wabuyele, H. Chen, D. Patterson, M. Hupert, H. Shadpour, D. Nikitopoulos, and S. A. Soper. 2005. Anal. Chem. 77: 658-666
[11]Chiou, J., P. Matsudaira, A. Sonin, and D. Ehrlich. 2001. A Closed-Cycle Capillary Polymerase Chain Reaction Machine. Anal. Chem. 73: 2018-2021
[12]Cheng, J. Y., C.W. Wei , K.H. Hsu, T. H. Young. 2004. Direct-write laser micromachining and universal surface modification of PMMA for device development. Sen. and Actuators B 99: 186–196
[13]Daniel, J. H., S.Iqbal, R. B. Millington, C.R. Lowe, D.L. Leslie, M.A. Lee and M.J. Pearce, Silicon microchambers for DNA amplification.Sens Actuators A. 71: 81-88
[14]Elkin, C. J.,S B.Brown, S. N. Nasarabadi, R. G. Langlois, F.P. Milanovich, and B. W. Colston. 2003. A Reusable Flow-Through Polymerase Chain Reaction Instrument for the Continuous Monitoring of Infectious Biological Agents. Anal. Chem. 75: 3446-3450
[15]Fukuba T., T.Naganuma,T.Fujii, Micro fabricated flow-through PCR device for in situ gene analysis in extreme environments,2003, Proc, MicroTAS 725-728
[16]Giordano B.C., J. Ferrance, S. Swedberg, A.F.R. Huhmer, J.P. Landers, Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 s, Anal. Biochem. 291 (2001) 124–132.
[17]Hong, J.K., T. Fujii, M. Seki, T. Yamamoto, I. Endo. 2001. Integration of amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid micro chip. Electrophoresis. Vol.22,pp 328-333
[18]Kopp, M. U., A.J.deMello, A.Manz. 1998. Chemical amplification continuous-flow PCR on a chip. Science. 280(5366) : 1046-1048.
[19]Krishnan,M.,N.Agrawal, M. A. Burns and V. M. Ugaz .2004 .Reactions and Fluidics in Miniaturized Natural Convection Systems.Anal. Chem. 76, 6254-6265
[20]Liao, C. S., G. B. Lee, J. J. Wu, C. C. Chang , T. M. Hsieh , F. C. Huang and C. H. Luo. 2005. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. Biosensors and Bioelectronics 20 : 1341–1348
[21]Nagai, H., Y. Murakami, Y. Morita, K. Yokoyama, and E. Tamiya. 2001. Development of A Microchamber Array for Picoliter PCR. Anal. Chem. 73 : 1043-1047
[22]Nagai, H., Y. Murakami, Y. Morita, K. Yokoyama, and E. Tamiya. 2001. High-throughput PCR in silicon based microchamber array. 2001. Binsensors and Bioelectronics 16: 1015-1019
[23]Oda, R. P., M. A. Strausbauch, A. F.R.Huhmer, N. Borson, S. R. Jurrens, J. Craighead, P. J. Wettstein, B. Eckloff, B. Kline, and J. P. Landers. 1998. Infrared-Mediated Thermocycling for Ultrafast Polymerase Chain Reaction Amplification of DNA. Anal. Chem. 70: 4361-4368
[24]Pilarski, P.M., S. Adamia , C. J. Backhouse, 2005, An adaptable microvalving system for on-chip polymerase chain reactions . Journal of Immunological Methods 305 48–58.
[25]Pilarski, P.M., S. Adamia, C. J. Backhouse . 2006. DNA amplification on a PDMS–glass hybrid microchip. J. Micromech. Microeng. 16 425–433
[26]Shin, Y., S. K. Cho, S. H. Lim, S. Chung, S. J. Park, C. Chung, D. C. Han and J. K. Chang. 2003. PDMS-based micro PCR chip with Parylene coating. J. Micromech. Microeng. 13 : 768–774
[27]West J., B. Karamata, B. Lillis, J. P. Gleeson, J. Alderman, J. K. Collins, W. Lane, A. Mathewson and H. Berney. 2002 . Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip: 2, 224–230
[28]Woolley, A. T., D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, and M. A. Northrup. 1996. Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device. Anal. Chem. 68: 4081-4086
[29]Wheeler, E. K., W. B. P. Stratton, J. Richards, A. Chen, A. Christian, K. D. Ness, J. Ortega, L. G. Li, T. H. Weisgraber, K. Goodson, and F. Milanovich. 2004. Convectively Driven Polymerase Chain Reaction Thermal Cycler. Anal. Chem. 76: 4011-4016
[30]Zou, Q., Y. Miao, Y. Chen, U. Sridhar, C. S. Chong, T. Chai, Y. Tie, C. H. L. Teh, T. M. Lim, and C. K. Heng. 2002. Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing. Sen. and Actuators A 102 : 114–121
[31]Zhao, Z., Z. Cui , D. Cui, and S. Xia. 2003. Monolithically integrated PCR biochip for DNA amplification. Sen. and Actuators A 108 : 162–167
[32]Cheng, J. Y., Chien-Ju Hsieh, Yung-Chuan Chuang and Jing-Ru Hsieh. 2005 Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Analyst, 130,931–940
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊