Chang, H. W., Shaw J. T., Lee, S. M., and Hong, M. C. 2000. Classifying the varieties of paddy rice by near infrared and image processing techniques. J. Agric. Mach. 9:1-16.
Granitto, P. M., Verdes, P. F., and Ceccatto, H. A. 2005. Large-scale investigation of weed seed identification by machine vision. Computers and Electronics in Agriculture. 47: 15–24.
Jin, T., Liu, L., Tang, X., and Chen, H. 1995. Differentiation of male, female and dead silkworms while in the cocoon by near infrared spectroscopy. J. Near Infrared Spectrosc. 3: 89–95.
Kwon, Y. K., and Cho, R. K. 1998. Identification of rice variety using near infrared spectroscopy. J. Near Infrared Spectrosc. 6: 67–73.
Liu, M. Q., and Shaw, J. T. 1995. The detection of rice moisture and protein content with near-infrared spectrophotometer. J. Agric. Mach. 4:1-14.
Li, W. S., and Shaw, J. T. 1996. Data processing affecting the NIR calibration curves of major constituents of rough rice taste. J. Agric. Mach. 5:19-34.
Li, W. S., and Shaw, J. T. 1997. Determining the fat acidity of rough rice by near-infrared reflectance spectroscopy. Cereal Chem. 74:556-560.
Lin, C. T., and Lee, C. S. 1999. Neural fuzzy systems. Prentice-Hall (Singapore) Pte Ltd. P236-239.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Classifying paddy rice by morphological and color features using machine vision. Cereal Chem. 82:649-653.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2006. Wavelength selection for classifying paddy rice by near-infrared spectroscopy. Cereal Chem. 83: 335-339.
Osborne, B.G., Mertens, B., Thompson, M., and Fearnc, T. 1993. The authentication of Basmati rice using near infrared spectroscopy. J. Near Infrared Spectrosc. 1: 77–83.
Paliwal, J., Shashidhar, N. S., and Jayas, D.S. 1999. Grain kernel identification using kernel signature. Trans. ASAE 42: 1921-1924.
Rencher, A. C. 1995. Methods of multivariate analysis. John Wiley and Sons, Inc.New York. P.257.
Shatadal, P., and Tan, J. 2003. Identifying damaged soybeans by color image analysis. Applied Engineering in Agriculture. Vol. 19: 65-69.
Sirieix, A., and Downey, G. 1993. Commercial wheat flour authentication by discriminant analysis of near infrared reflectance spectra. J. Near Infrared Spectrosc. 1:187–197.
Wan, Y. N. 2002a. Kernel handling performance of an automatic quality inspection system. Trans. ASAE 45: 369-377.
Wan, Y. N., Lin, C. M., and Chiou, J. F. 2002b. Rice quality classification using an automatic grain quality inspection system. Trans. ASAE 45: 379-387.
Wang, D., Dowell, F. E., and Lacey, R. E. 1999. Single wheat kernel color classification using neural networks. Trans. ASAE 43:233-240.
Wang, D., Ram, M. S., and Dowell, F. E. 2002. Classification of damaged soybean seeds using near-infrared spectroscopy. Trans. ASAE. 45: 1943–1948.
Chang, H. W., Shaw, J. T., Lee, S. M., and Hong, M. C. 2000. Classifying varieties of paddy rice by near-infrared and image processing technique. J. Agric. Mach. 9:1-16.
Corbella, E., and Cozzolino, D. 2005. The use of visible and near-infrared spectroscopy to classify the floral origin of honey samples produced in Uruguay. J. NIRS 13:63-68.
Delwiche, S. R., Chen, Y. R., and Hruschka, W. R. 1995. Differentiation of hard red wheat by near-infrared analysis of bulk samples. Cereal Chem. 72:243-247.
Liu, M. Q, and Shaw, J. T. 1995. The detection of rice moisture and protein content with near-infrared spectrophotometer. J. Agric. Mach. 4:1-14.
Li, W. S., and Shaw, J. T. 1996. Data processing affecting the NIR calibration curves of major constituents of rough rice taste. J. Agric. Mach. 5:19-34.
Li, W. S., and Shaw, J. T. 1997. Determining the fat acidity of rough rice by near-infrared reflectance spectroscopy. Cereal Chem. 74:556-560.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Classifying paddy rice by morphological and color features using machine vision. Cereal Chem. 82:649-653.
Paliwal, J., Visen, N. S., Jayas, D. S., and White, N. D. G. 2003. Comparison neural network and a non-parametric classifier for grain kernel identification. Biosys. Eng. 85:405-413.
Peng, Z. Y. 2000. SAS and statistical analysis (in Chinese). 2nd Ed. Pages 41-2. Ru-lin Publisher: Taipei, Taiwan.
Rencher, C. A. 1995. Discriminant analysis: Description of group separation. Pages 296-325 In: Methods of Multivariate Analysis. John Wiley and Sons: New York.
Rittiron, R., Saranwong, S., and Kawano, S. 2005. Detection of variety contamination in milled Japanese rice using a single kernel near infrared technique in transmittance mode. J. NIRS 13:9-25.
Shen, M. L. 1999. Introduction to statistics (in Chinese), 3rd Ed. Pages 177-178. Chiu-chow Publisher: Taipei, Taiwan.
Song, H., Delwiche, S. R., and Chen, Y. R. 1995. Neural network classification of wheat using single kernel near-infrared transmittance spectra. Opt. Eng. 34:2927-2934.
Velleman, P. F., and Welsch, R. E. 1981. Efficient computing of regression diagnostics. Am. Statist. 35:234-242.
Wang, D., Ram, M. S., and Dowell, F. E. 2002. Classification of damaged soybean seeds using neat infrared spectroscopy. Trans. ASAE 45:1943-1948.
Barker, D. A., Vuori, T. A., and Myers, D. C. 1992. The use of slice and aspect ratio parameters for the discrimination of Australian wheat varieties. Plant Varieties Seeds 5:47-52.
Burks, T. F., Shearer, S. A., Gates, R. S., and Donohue, K. D. 2000. Backpropagation neural network design and evaluation for classifying weed species using color image texture. Trans. ASAE 43:1029-1037.
Chang, H. W., Shaw, J. T., Lee, S. M., and Hong, M. C. 2000. Classifying varieties of paddy rice by near-infrared and image processing technique. J. Agric. Mach. 9:1-16.
Corbella, E., and Cozzolino, D. 2005. The use of visible and near-infrared spectroscopy to classify the floral origin of honey samples produced in Uruguay. J. NIRS 13:63-68.
Delwiche, S. R., Chen, Y. R., and Hruschka, W. R. 1995. Differentiation of hard red wheat by near-infrared analysis of bulk samples. Cereal Chem. 72:243-247.
Liu, M. Q, and Shaw, J. T. 1995. The detection of rice moisture and protein content with near-infrared spectrophotometer. J. Agric. Mach. 4:1-14.
Li, W. S., and Shaw, J. T. 1996. Data processing affecting the NIR calibration curves of major constituents of rough rice taste. J. Agric. Mach. 5:19-34.
Li, W. S., and Shaw, J. T. 1997. Determining the fat acidity of rough rice by near-infrared reflectance spectroscopy. Cereal Chem. 74:556-560.
Luo, X., Jayas, D. S., and Symons, S. J. 1999. Comparison of statistical and neural network methods for classifying cereal grains using machine vision. Trans. ASAE 42:413-419.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Classifying paddy rice by morphological and color features using machine vision. Cereal Chem. 82:649-653.
Majumdar, S., and Jayas, D. S. 2000. Classification of cereal grains using machine vision: Combined morphology, color, and texture models. Trans. ASAE 43:1689-1694.
Paliwal, J., Visen, N. S., and Jayas, D. S. 2001. Evaluation of neural network architectures for cereal grain classification using morphological features. J. Agric. Eng. Res. 79:361-370.
Paliwal, J., Visen, N. S., Jayas, D. S., and White, N. D. G. 2003. Comparison neural network and a non-parametric classifier for grain kernel identification. Biosys. Eng. 85:405-413.
Peng, Z. Y. 2000. SAS and statistical analysis (in Chinese). 2nd Ed. Pages 41-2. Ru-lin Publisher: Taipei, Taiwan.
Rencher, C. A. 1995. Discriminant analysis: Description of group separation. Pages 296-325 In: Methods of Multivariate Analysis. John Wiley and Sons: New York.
Rittiron, R., Saranwong, S., and Kawano, S. 2005. Detection of variety contamination in milled Japanese rice using a single kernel near infrared technique in transmittance mode. J. NIRS 13:9-25.
Song, H., Delwiche, S. R., and Chen, Y. R. 1995. Neural network classification of wheat using single kernel near-infrared transmittance spectra. Opt. Eng. 34:2927-2934.
Shatadal, P., Jayas, D. S., and Bulley, N. R. 1995. Digital image analysis for software separation and classification of touching grains. II. Classification. Trans. ASAE 38:645-649.
Shen, M. L. 1999. Introduction to statistics (in Chinese), 3rd Ed. Pages 177-178. Chiu-chow Publisher: Taipei, Taiwan.
Shen, M. L. 2003. Introduction to Statistics. 4th Ed. Pages 376-390. (In Chinese) Chiu-chow Publisher: Taipei, Taiwan.
Travis, A. J., and Draper, S. R. 1985. A computer based system for the recognition of seed shape. Seed Sci. Technol. 14:715-724.
Tsang, M., Hsia, I., and Chen, C. 1990. Identification of rice cultivars by means of quantifying the grain shape. College of Agriculture, National Taiwan University: Taiwan.
Velleman, P. F., and Welsch, R. E. 1981. Efficient computing of regression diagnostics. Am. Statist. 35:234-242.
Wang, D., Ram, M. S., and Dowell, F. E. 2002. Classification of damaged soybean seeds using neat infrared spectroscopy. Trans. ASAE 45:1943-1948.
Wang, D., Dowell, F. E., and Lacey, R. E. 1999. Single wheat kernel color classification using neural networks. Trans. ASAE 43:233-240.
Zayas, I., Pomeranz, Y., and Lai, F. S. 1986. Discrimination between wheat classes and varieties by image analysis. Cereal Chem. 63:52-56.
Burks, T. F., Shearer, S. A., and Donohue, K. D. Backpropagation neural network design and evaluation for classifying weed species using color image texture. Trans. ASAE 43: 1029-1037.
Chang, H. W., Shaw, J. T., Lee, S. M., and Hong, M. C. 2000. Using near infrared rays and imaging technology to validate varieties of paddy rice. J. Agric. Mach. 9:1-16.
Lee, S. M. 1998.Using near infrared rays and imaging technology to validate varieties of paddy rice. Graduate Thesis. Taipei: Department of Bio-Industrial Mechatronics Engineering of National Taiwan University.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Influences of Paddy Rice Classifying of Choose of Variables. J. Agric. Mach. 14:17-32.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Influences of Paddy Rice Variety Validating of Choosing of Near Infrared Spectra Wavelength. J. Agric. Mach. 14: 27-38.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Wavelength selection for classifying paddy rice by near-infrared spectroscopy. Cereal Chem. 83: 335-339.
Peng, C. Y. 2000. SAS and Statistic Analysis. 6th Version. Taipei: Scholar Books Co., Ltd.
Paliwal J., Shashidhar, N. S., and Jayas, D. S. 1999. Grain Kernel Identification using Kernel Signature. Trans. ASAE. 42: 1921-1924.
Paliwal J., Visen, N. S., and Jayas, D. S. 2001. Evaluation of Neural Network Architectures for Cereal Grain Classification using Morphological Variables. J. Agric. Engng Res. 79: 361-370.
Paliwal, J., Visen, N. S., Jayas, D. S., and White, N. D. G. 2003. Comparison neural network and a non-parametric classifier for grain kernel identification. Biosystems Engineering. 85: 405-413.
Tsung, M. T., Hsieh, Y. H., and Chen, C. Y. 1990. Using the average number of outer image characteristics of paddy rice to judge the cultivating variety of paddy rice. Research Report of College of Bio-Resources and Agriculture of National Taiwan University. 30:58-65.
沈明來。1999。生物統計學入門。3版。177-178。台北:九州出版社。
李汪盛、蕭介宗。1996。資料處理對於稻穀食味主要成分之近紅外線校正線之影響。農業機械學刊 5:19-34。曾美倉、謝英雄、陳正義。1990。利用榖粒外形影像特徵之樣品平均數來判別水稻栽培品種。台大農學院研究報告 30:58-65。
張鴻文、蕭介宗、李盛銘、洪梅珠。2000。以近紅外線及影像技術鑑別水稻品種。農業機械學刊 9:1-16。彭昭英。2000。SAS與統計分析。11版。台北:儒林圖書有限公司。
劉民卿、蕭介宗。1995。以近紅外線光譜儀感測稻米之含水率及蛋白質含量。農業機械學刊 4:1-14。
Burks, T. F., Shearer, S. A. and Donohue, K. D. 2000. Backpropagation neural network design and evaluation for classifying weed species using color image texture. Trans. ASAE. 43: 1029-1037.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Classifying paddy rice by morphological and color features using machine vision. Cereal Chem. 82:649-653.
Liu, C. C., Shaw, J. T., Poong, K. Y., Hong, M. C., and Shen, M. L. 2005. Wavelength selection for classifying paddy rice by near-infrared spectroscopy. Cereal Chem. 83: 335-339.
Paliwal, J., Visen, N. S., Jayas, D. S. and White, N. D. G. 2003. Comparison neural network and a non-parametric classifier for grain kernel identification. Biosystems Engineering 85: 405-413.
Paliwal J., Shashidhar, N. S. and Jayas, D. S. 1999. Grain Kernel Identification using Kernel Signature. Trans. ASAE. 42: 1921-1924.
Paliwal J., Visen, N. S. and Jayas, D. S. 2001. Evaluation of Neural Network Architectures for Cereal Grain Classification using Morphological Parameters. J. Agric. Engng Res. 79: 361-370.
Song H., Delwiche, S. R. and Chen, Y.R. 1995 Neural network classification of wheat using single kernel near-infrared transmittance spectra. Optical Engineering 34:2927-2934.
Velleman, P. F. and Welsch, R. E. 1981. Efficient computing of regression diagnostics. The Amer. Statistician 35:234-242.