呂宏志。2005。溫室多功能監測系統之開發─苗床植株遙測與環境因子量測。碩士論文。台北:國立台灣大學生物產業機電工程學所。呂沛哲。1999。甘藍苗性狀之影像量測。碩士論文。台北:國立台灣大學農業機械工程學所。李明達。2001。水分逆境下植物影像特徵分析之硏究。碩士論文。台北:國立台灣大學生物產業機電工程學所。
邱鶴圍。1999。近紅外光應用於芒果內部品質分析之研究。碩士論文。台北:國立台灣大學農業機械工程學所。徐百輝、曾義星。2000。高光譜影像萃取方法之探討。航測及遙測學刋5(3):1-14。
張仁明、林達德。1999。類神經網路與貝氏分類法應用於影像分割之比較研究。農業機械學刋8(3):61-74。
張文宏、陳世銘、連豊力、許豐益、謝廣文。1994。水果智慧型選別之研究。農業機械學刊3(4):25-35。
張文宏、陳世銘、郭立穎。1998。洋香瓜糖度檢測知研究(二)-近紅外線分析法。農業機械學刊 7(1):87-98。張庚鵬、張愛華。1997。蔬菜作物營養障礙診斷圖鑑。臺灣省農業試驗所特刋第65號。台中:臺灣省農業試驗所。
張晉倫。2006。應用溫室內多功能監測系統於甘藍種苗生長性狀判別之研究。碩士論文。台北:國立台灣大學生物產業機電工程學所。張富洲、劉大江。1992。水稻分蘗之生理研究V. 穀粒充實期間氮含量變化與產量之關係。中華農業研究 41(4):311-316。張嘉麟、陳世銘。1999。近紅外光與核磁共振應用在乳粉脂肪含量之檢測。農業機械學刋8(3):43-60。
郭立穎、陳世銘、張文宏。1998。洋香瓜糖度檢測之研究-(一)影像紋理分析法。台北:國立台灣大學農業機械工程學所。
陳世銘、張文宏、謝廣文。1998。果汁糖度檢測模式之研究。農業機械學刊7(3):41-60。陳世銘、黃政偉、吳德輝、楊智凱、黃竣吉、蔡養正、繆八龍。2002。稻株含氮量地面多光譜影像遙測系統之開發研究。出自“「水稻精準農業(耕)體系之研究」計畫成果研討會暨展示會大會手冊”,93-99。台中縣:農業試驗所。陳加增。2001。近紅外光應用於水果糖酸度線上檢測之研究。碩士論文。台北:國立台灣大學農業機械工程學所。陳加增、陳世銘、楊蕙綺、楊宜璋、蕭世傑。2006。蔬菜葉片氮含量之近紅外光反射光譜分析。農業機械學刊15(4)。陳昇明編譯。1985。植物生理學。台北:三民書局。
黃政偉。2002。多光譜影像應用於水稻植株含氮量之遙測。碩士論文。台北:國立台灣大學生物產業機電工程學所。
黃竣吉。2003。稻株含氮量多光譜影像遙測系統之硏究。碩士論文。台北:國立台灣大學生物產業機電工程學所。
楊健春。1993。人工智慧於電力系統運轉之應用。碩士論文。台北:國立台灣大學電機工程學硏究所。
謝廣文、陳世銘、李明達、陳加增。2000。蔬菜生長動態模擬之研究。八十九年農業機械論文發表會論文摘要集 161-162。
Baronti, S., A. Casini, F. Lotti, and S. Porcinai. 1997. Principle component analysis of visible and near-infrared multispectral images of works of art. Chemometrics and Intelligent Laboratory Systems 39:103-114.
Bausch, W. C., and H. R. Duke. 1996. Remote sensing of plant nitrogen status in corn. Transactions of ASAE. 39(5):1869-1875.
Benoudjit, N., D. Francois, M. Meurens, and M. Verleysen. 2005. Spectrophotometric variable selection by mutual information. Chemometrics Intell. Lab. Syst. 74:243-251.
Blackmer, T. M., J. S. Schepers, G. E. Varvel, and E. A. Walter. 1996. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 88(1):1-5.
Blanco, M., J. Coello, H. Iturriaga, S. Maspoch and J. Pages. 1999. Calibration in non-linear near infrared reflectance spectroscopy: a comparison of several methods. Analytica Chimica Acta 384:207-214.
Boegh, E., H. Soegaard, N. Broge, C. B. Hasager, N. O. Jensen, K. Schelde and A. Thomsen. 2002. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ.81:179-193.
Bolster, K. L., M. E. Martin, and J. D. Aber. 1996. Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared: a comparison of statistical methods. Can. J. For. Res. 26:590-600.
Boyd, D. S., G. M. Foody, and W. J. Ripple. 2002. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Applied Geography 22 (4):375–392.
Broner, I., and C. R. Comstock. 1997. Combining expert systems and neural networks for learning site-specific conditions. Computers and electronics in agriculture. 19 (1):37-53.
Burger, J., and P. Geladi. 2005. Hyperspectral NIR image regression part I: Calibration and correction. J. Chemometrics 19: 355–363.
Burks, T. F., S. A. Shearer, R. S. Gates and K. D. Donohue. 2000. Backpropagation Neural Network Design and Evaluation for Classifying Weed Species Using Color Image Texture. Transactions of ASAE 43(4):1029-1037.
Camille, C., D. Lelong, C. Pinet and H. Poilve. 1998. Hyperspectral imaging and stress mapping in agriculture: a case study on wheat in Beauce (France). Remote Sens. Environ. 66: 179-191.
Casady, W. W., N. Singh. and T. A. Costello. 1996. Machine vision for measurement of rice canopy dimensions. Transactions of ASAE. 39(5):1891-1898.
Chang, W. H., S. Chen and C. C. Tsai. 1998. Development of a universal algorithm for use of NIR in estimation of soluble solids in fruit juices. Transactions of the ASAE 41(6): 1739-1745.
Chao, K., Y. R. Chen, W. R. Hruschka, and B. Park. 2001. Chicken heart disease characterization by multi-spectral image. Applied Engineering in Agriculture 17(1):99-106.
Chen, C. T., S. Chen and H. C. Yang. 2002. Determination of nitrogen content in leafy vegetables using spectra information analysis. In “Proceedings of International Symposium on Automation and Mechatronics of Agricultural and Bioproduction Systems”, 184-189. Chiayi, Taiwan:National Chiayi University.
Chen, C. T., S. Chen, and H. C. Yang. 2004. Characterizing nitrogen status of cabbage seedlings using spectral images. In “Proceedings of the Second International Symposium on Machinery and Mechatronics for Agriculture and Bio-systems Engineering”, S2-97 ~ 100. Kobe, Japan: Kobe University.
Chen, C. T., S. Chen, K. W. Hsieh, H. C. Yang, S. Hsiao and I. C. Yang. 2007. Estimation of leaf nitrogen content using artificial neural network with cross-learning scheme and significant wavelengths. Transactions of the ASABE 50(1): 295-301.
Chen, C. T., S. Chen, K. W. Hsieh, H. C. Yang, S. Hsiao, I. C. Yang. 2004. Estimation of nitrogen content by spectral responses of cabbage seedlings using artificial neural network approach. ASAE Paper No. 04-1082, St. Joseph, MI, USA: ASAE.
Chen, L. 2003. A study of applying genetic programming to reservoir trophic stateevaluation using remote sensor data. Int. J. Remote Sensing. 24(11):2265-2275.
Chen, S. 2001. Current research and development programs of agricultural automation in Taiwan. In “Proceedings of East Asia Bioproduction Engineering Forum”, ed. P. Ling, P. 47-52. Presented at ASAE 94th Annual International Meeting, Sacramento, California, USA.
Chen, S. and K. W. Hsieh. 2000. Strategies for dynamic simulation of seedling growth in plant factory. In “ Proceedings of the XIV Memorial CIGR World Congress 2000 ”, 1002-1007. Tsukuba, Japan: Tsukuba University.
Chen, S. and M. T. Li, 2001. Multispectral imaging of chlorophyll content for vegetable status monitoring. In “Book of Abstracts, The 6th International Symposium on Fruit, Nut, and Vegetable Production Engineering”, P.74. Potsdam, Germany: Institute of Agricultural Engineering Bornim e.V. (ATB).
Chen, S. and M. T. Li. 2001. Multispectral imaging of chlorophyll content for vegetable status monitoring. In "Fruit, Nut, and Vegetable Production Engineering, Proceedings of the 6th International Symposium held in Potsdam 2001", P.603-608. Potsdam, Germany: Institute of Agricultural Engineering Bornim e.V. (ATB).
Chen, S., C. W. Huang, C. C. Huang, C. K. Yang, T. H. Wu, Y. Z. Tsai and P. L. Miao. 2003. Determination of nitrogen content in rice crop using multi-spectral imaging. ASAE Paper No. 03-1132, St. Joseph, MI, USA: ASAE.
Chen, S., C. W. Huang, T. H. Wu, C. K. Yang, C. C. Huang, Y. Z. Tsai and P. L. Miao. 2002. Remote sensing of nitrogen content in rice crop using multi-spectral imaging. In“Proceedings of International Symposium on Automation and Mechatronics of Agricultural and Bioproduction Systems”, 466-472. Chiayi, Taiwan:National Chiayi University.
Chen, S., C. Y. Tsai, J. F. Hsieh, C. H. Hung, Y. C. Chiu, K. W. Hsieh, J. A. Jiang, R. L. C. Chen, H. C. Yang, C. T. Chen, I. C. Yang, C. W. Yang, T. H. Wu, M. T. Li, C. W. Huang, C. C. Huang, C. C. Tsai, C. K. Yang, and P. Brimmer. 2004. Growth status monitoring and quality evaluation for bio-production and products using spectral sensing techniques. In “Proceedings of the Second International Symposium on Machinery and Mechatronics for Agriculture and Bio-systems Engineering”, Keynote Speech, KN-9 ~ 23. Kobe, Japan: Kobe University.
Chen, S., C. Y. Tsai, J. F. Hsieh, C. H. Hung, Y. C. Chiu, K. W. Hsieh, J. A. Jiang, R. L. C. Chen, C. T. Chen, I. C. Yang, C. W. Yang, C. C. Tsai, and P. Brimmer. 2004. Quality evaluation of bio-products using spectral sensing techniques. In “Proceedings of International Workshop on Nondestructive Quality Evaluation of Agricultural and Livestock Products”. Taipei, Taiwan: Taiwan Agricultural Mechanization Research and Development Center.
Chen, S., M. T. Li, C. T. Chen, Y. C. Lin, C. W. Huang, T. H. Wu and K. W. Hsieh. 2001. Remote sensing of crop growth characteristics in greenhouse. In “Proceedings of International Symposium on Design and Environmental Control of Tropical and Subtropical Greenhouses”, Taichung, Taiwan.
Chen, S., M. T. Li, C. T. Chen, Y. C. Lin, C. W. Huang, T. H. Wu and K. W. Hsieh. 2002. Remote sensing of crop growth characteristics in greenhouses. In “Proceedings of International Symposium on Design and Environmental Control of Tropical and Subtropical Greenhouses”, eds. S. Chen and T. T. Lin. Acta Horticulturae 578:295-301.
Chen, S., W. C. Kuo and W. H. Chang. 1997. Vision system for morphologic characteristics measurements related to cabbage seedling quality. In “Proceedings of 5th International Symposium on Fruit, Nut, and Vegetable Production Engineering”. Davis, California, U.S.A.
Cho, S. I., D. S. Lee, and J. Y. Jeong. 2002. Weed–plant discrimination by machine vision and artificial neural network. Biosystems Engineering 83 (3):275–280.
Coops, N. C., M. L. Smith, M. E. Martin, and S. V. Ollinger. 2003. Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans. Geosci. Remote Sensing 41(6):1338-1346.
Diker, K., and W. C. Bausch. 2003. Radiometric field measurements of maize for estimating soil and plant nitrogen. Biosystems Engineering 86 (4): 411–420.
Elmore, A. J., and J. F. Mustard. 2003. Precision and accuracy of EO-1 advanced land imager (ALI) data for semiarid vegetation studies. IEEE Trans. Geosci. Remote Sensing 41(6):1311-1320.
Fernandes, R. A., J. R. Miller, J. M. Chenc, I. G. Rubinstein. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery. Remote Sens. Environ. 89:200–216.
García-Ciudad, A., A. Ruano, F. Becerro, I. Zabalgoeazcoa, B. R. Vazquez de Aldana, and B. Garcia-Criado. 1999. Assessment of potential of NIR spectroscopy for the estimation of nitrogen content in grasses from semiarid grasslands. Animal Feed Science and Technology 77:91-98.
Gat, N. 2000. Imaging spectroscopy using tunable filters: a review. In “Proceeding of SPIE Vol. 4056”, 50-64.
Geladi, P., J. Burgerb, and T. Lestander. 2004. Hyperspectral imaging: calibration problems and solutions. Chemometrics Intell. Lab. Syst. 72:209– 217.
Gillon, D., C. Houssard, and R. Joffre. 1999. Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia. 118:173-182.
Goel P. K., S. O. Prasher, J. A. Landry, R. M. Patel, R.B. Bonnell, A. A. Viau, J. R. Miller. 2003a. Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Comput. Electron. Agric. 38: 99-124
Goel, P. K., S. O. Prasher, J. A. Landry, R. M. Patel, A. A. Viau, and J. R. Miller. 2003b. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Transactions of the ASAE 46(4): 1235–1246.
Goel, P. K., S. O. Prasher, J. A. Landry, R. M. Patel, and A. A. Viau. 2003c. Hyperspectral image classification to detect weed infestations and nitrogen status in corn. Transactions of the ASAE 46(2): 539–550.
Goel, P. K., S. O. Prasher, R. M. Patel, D. L. Smith, and A. DiTommaso. 2002. Use of airborne multi–spectral imagery for weed detection in field crops. Transactions of the ASAE 45(2): 443–449.
Goodenough, D. G., A. Dyk, K. O. Niemann, J. S. Pearlman, H. Chen, T. Han, M. Murdoch, and C. West. 2003. Processing Hyperion and ALI for forest classification. IEEE Trans. Geosci. Remote Sensing 41(6):1321-1331.
Gopal, S. and C. Woodcock. 1996. Remote sensing of forest change using artificial neural networks. IEEE Trans. Geosci. Remote Sensing 34(2):398-404.
Green, R. O., B. E. Pavri, and T. G. Chrien. 2003. On-Orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina. IEEE Trans. Geosci. Remote Sensing 41(6):1194-1203.
Grossman, Y. L., S. L. Ustin, S. Jacquemoud, E. W. Sanderson, G. Schmuck, and J. Verdebout. 1996. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ. 56:182-193.
Haykin, S. 1994. Neural Networks: A Comprehensive Foundation, 138–235. New York, N.Y.: Macmillan College Publishing.
Hikosaka, K. and I. Terashima. 1995. A model of the acclimation of photosynthesis in the leaves of C3 plant to sun and shade with respect to nitrogen use. Plant Cell Envir. 18:605-618.
Herrero, H., I. Murray, R. H. Fawcett, and J. B. Dent. 1996. Prediction of the in vitro gas production and chemical composition of kikuyu grass by near-infrared reflectance spectroscopy. Animal Feed Science Technology 60: 51-67.
Hsieh, C., Y. R. Chen, B. P. Dey, and D. E. Chan. 2002. Separating septicemic and normal chicken livers by visible/near–infrared spectroscopy and back–propagation neural networks. Transactions of ASAE. 45(2): 459–469
Hsieh, K. W., S. Chen, W. H. Chang, M. T. Lee and C. T. Chen. 2001. A dynamic simulation model for seeding growth. Transactions of the ASAE 44(6):1949-1954.
Jago, R. A., M. E. Cutler and P. J. Curran. 1999. Estimating canopy chlorolhyll concentration from field and airborne spectra. Remote Sens. Environ. 68:217-224.
Johnson, L. F., and C. R. Billow. 1996. Spectroscopic estimation of total nitrogen concentration in Douglas-fir Foliage. Int. J. Remote Sens. 17:489-500.
Kawamura, S., M. Natsuga, K. Takehura, and K. Itoh. 2003a. Development of an automatic rice-quality inspection system. Comput. Electron. Agric. 40:115-126.
Kawamura, S., M. Tsukahara, M. Natsuga, and K. Itoh. 2003b. On-line near infrared spectroscopic sensing technique for assessing milk quality during milking. ASAE Paper No. 03-3026. St. Joseph, MI: ASAE.
Kokaly, R. F. and R. N. Clark. 1999. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 67:267-287.
Kostrzewski, M., P. Waller, P. Guertin, J. Haberland, P. Colaizzi. E. Barnes, T. Thompson, T. Clarke, E. Riley, and C. Choi. 2002. Ground–based remote sensing of water and nitrogen stress. Transactions of the ASAE 46(1): 29–38
Kruse, F. A., J. W. Boardman, and J. F. Huntington. 2003. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sensing 41(6):1388-1400.
Lavine, B. K., C. E. Davidson, A. J. Moores. 2002. Innovative genetic algorithms for chemoinformatics. Chemometrics Intell. Lab. Syst. 60:161-171.
Lawrence, K. C., B. Park, W. R. Windham, and C. Mao. 2003. Calibration of a pushbroom hyperspectral imaging system for agricultural inspection. Transactions of the ASAE 46(2): 513–521.
Lee, W. S., J. F. Sanchez, R. S. Mylavarapu, J. S. Choe. 2003. Estimating chemical properties of florida soils using spectral reflectance. Transactions of the ASAE 46(5):1443-1453.
Lobell, D. B., and G. P. Asner. 2003. Comparison of Earth Observing-1 ALI and Landsat ETM+ for crop identification and yield prediction in Mexico. IEEE Trans. Geosci. Remote Sensing 41(6):1277-1282.
Luther, J. E. and A. L. Carroll. 1999. Development of an index of Balsam Fir Vigor by foliar spectral reflectance. Remote Sens. Environ. 69:241-252.
Mehl, P. M., K. Chao, M. Kim and Y. R. Chen. 2002. Detection of defects on selected apple cultivars using hyperspectral and multispectral image analysis. Applied Engineering in Agriculture 18(2):219-226.
Miller, C.E. 1993. Sources of non-linearity in near-infrared methods. NIR News 4(6): 3-5.
Mutanga, O., and A. K. Skidmore. 2004. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sens. Environ. 90: 104– 115.
Park, B. and Y. Chen. 1996. Multispectral image co-occurrence matrix analysis for poultry carcasses inspection. Transactions of the ASAE 39(4): 1485-1491.
Park, B., Y. Chen and M. Nguyen. 1998. Multi-spectral image analysis using neural network algorithm for inspection of poultry carcasses. Journal of Agricultural Engineering Research. 69: 351-363.
Pendharkar. P. C. 2001. An empirical study of design and testing of hybrid evolutionary–neural approach for classification. Omega 29:361-374.
Peng, S., M. R. C. Laza, F. V. Garcia, and K. G. Cassman. 1995. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. Commun. Soil Sci. Plant. Anal. 26 (5/6):927-935.
Rand, R. S., and D. M. Keenan. Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity. IEEE Trans. Geosci. Remote Sensing 41(6): 1479-1490.
Rollin, E. M. and E. J. Milton. 1998. Processing of High Spectral Resolution Reflectance Data for Retrieval of Canopy Water Content Information. Remote Sens. Environ 65:86-92.
Rossi, F., A. Lendasse, D. Francois, V. Wertz, and M. Verleyesn. 2006. Mutual information for the selection of relevant variables in spectrometric nonlinear modeling. Chemometrics Intell. Lab. Syst. 80:215-226.
Serrano, L., J. Penuelas and S. L. Ustin. 2002. Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens. Environ 81:355-364.
Shaffer, R. E., and G. W. Small. 1996. Genetic algorithms for the optimization of piecewise linear discriminants. Chemometrics Intell. Lab. Syst. 35:87-104.
Sims, D. A. and J. A. Gamon. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 81:337-354.
Singh, N., W. W. Casady, and T. A. Costello. 1996. Machine vision based nitrogen management models for rice. Transactions of ASAE. 39(5):1899-1904.
Smith, M. L., M. E. Martin, L. Plourde, and S. V. Ollinger. 2003. Analysis of typerspectral data for estimation of temperate forest canopy nitrogen concentration: comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Trans. Geosci. Remote Sensing 41(6): 1332-1337.
Steinmetz, V., M. Roger, E. Molto, and J. Blasco. 1999. On-line fusion of colour camera and spectrophotometer for sugar content prediction of apple. Journal of Agriculture Engineering Research 73(2):207-216.
Stone, M. L., J. B. Raun, R. W. Whitney, S. L. Taylor, and J. D. Ringer. 1996. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of ASAE. 59(5):1623-1631.
Thenkabail, P. S., R. B. Smith and E. D. Pauw. 2000. Hyperspectral vegetation indices and their relationships with agriculture crop characteristics. Remote Sens. Environ. 71:158-182.
Tominaga, Y. 1998. Representative subset selection using genetic algorithm. Chemometrics Intell. Lab. Syst. 43:157-163.
Townsend, P. A., J. R. Foster, R. A. Chastain, and W. S. Currie. 2003. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian mountains using Hyperion and AVIRIS. IEEE Trans. Geosci. Remote Sensing 41(6):1347-1354.
Tumbo, S. D., D. G. Wagner, and P. H. Heinemann. 2002. Hyperspectral characteristics of corn plants under different chlorophyll levels. Transactions of ASAE. 45(3): 815–823
Ungar, S. G., J. S. Pearlman, J. A. Mendenhall, and D. Reuter. 2003. Overview of the Earth Observing One (EO-1) mission. IEEE Trans. Geosci. Remote Sensing 41(6):1149-1159.
White, J. D., C. M. Trotter, L. J. Brown, and N. Scott. 2000. Nitrogen concentration in New Zealand vegetation foliage derived from laboratory and field spectrometry. Intl. J. Remote Sensing 21(12): 2525-2531.
Wright, G. G., K.B. Matthews, W. M. Cadell, and R. Milne. 2003. Reducing the cost of multi-spectral remote sensing: combining near-infrared video imagery with colour aerial photography. Comput. Electron. Agric. 38:175-198.
Yoder, B. L. and R. E. Pettigrew-Crosby. 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra(400-2500) at leaf and canopy scales. Remote Sens. Environ. 53:199-211.
Zwiggelaar, R., Q. Yang, E. Garcia-Pardo, and C. R. Bull. 1996. Use of spectral information and machine vision for bruise detection on peaches and apricots. Journal of Agricultural Engineering Research. 63: 323-332.