跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王豊政
研究生(外文):Feng-Jehng Wang
論文名稱:氣泡式流體化床應用於農業廢棄物之焚化特性研究
論文名稱(外文):Study on the Incineration Characteristics Using AgriculturalWastes in Bubbling Fluidized Bed Incinerator
指導教授:陳世銘陳世銘引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:117
中文關鍵詞:流體化氣泡式流體化床焚化爐農業廢棄物數值模擬
外文關鍵詞:fluidizedbubbling fluidized bedincineratoragricultural wastenumerical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係根據農業廢棄物如農業廢棄塑膠布及病死豬等之理、化特性分析結果,以及農業廢棄物的燃燒與質能平衡理論,加上焚化爐設計與操作之主要參數等,設計並製造一實驗室用中型氣泡式流體化床焚化爐(Bubbling Fluidized Bed Incinerator;BFBI),並透過流體化理論、數值模擬分析及實驗量測等方法以了解流體化床焚化爐內部流體化氣體流速與壓力降之關係,藉以驗證及確認自行研製之氣泡式流體化床焚化爐之床質(矽砂)流體化調控特性。最後進行農業廢棄物之焚化試驗,透過焚化後所排放之廢氣與灰燼採樣分析結果,來建立本焚化爐之最佳操控體系。
本研究針對農業廢棄物之理、化特性分析,採用美國材料試驗協會(ASTM)之標準測定方法進行三成份、高熱值及組成元素等分析,結果顯示:L.Y.D.3品種病死公豬整隻豬體之低熱值(LHV)平均為5763.65kcal/kg,平均含水率為65.86%w.b.,平均含碳量為55.27%,平均含氧量為23.53%,可知豬體係為一高熱含量、高含水率及高含碳、氧量之有機燃料;又農業廢棄PP、PE、PVC及PS等塑膠布皆係含有高達95%以上之碳、氫可燃成份,且低熱值含量皆達10000 kcal/kg,為具有極高熱含量之化合物,且含水率及灰份皆極低(平均在1%以下)。根據這些農業廢棄物之理、化特性分析結果,可判定利用焚化法來處理該等農業廢棄物係為最適當可行的方法。
本研究並利用L.Y.D.3品種病死公豬化學組成元素之重量百分比與高熱值之實測值,經SAS迴歸分析而得到能準確估算豬隻高熱值(HHV)之相關公式(其相關係數皆達R2 = 0.65),為生質燃料之熱值估算公式建立一套標準研究方法。
本研究並透過流體化理論、數值模擬分析及實驗量測等方法來驗證該氣泡式流體化床焚化爐之流體化特性與床壓降之關係,以了解焚化爐內部流場變化情況,並建立一省時、有效之氣泡式流體化床焚化爐之數值模擬方法。利用計算流體力學軟體來模擬氣泡式流體化床焚化爐空床氣速(最小流體化速度)與流體化床壓力降的關係,根據數值模擬的結果顯示空床氣速和流體化床壓力降間具有顯著的線性關係(R2 = 0.9977),當空床氣速為0.188m/s時,床壓降等於4562.499Pa,與試驗計算值(4573.33Pa)的結果甚為接近,故本研究採用空床氣速為0.188m/s作為焚化實驗之最小流體化速度。本研究同時以3種不同之床砂拖曳係數與雷諾數之假設公式,求得流體化床床砂的終端速度為3.684m/s。進而確認本研究氣泡式流體化床操作時之空床氣速需限制在最小流體化速度與終端速度之間。
本研究利用BFBI焚化爐進行農業廢棄PP塑膠布之焚化試驗,在固定進料率與供氧率下,燃燒溫度自500℃至1000℃之間,其排放廢氣經採樣分析結果顯示:SO2之排放濃度隨著溫度之升高稍有遞減之趨勢;NO之排放濃度隨著溫度之升高有遞增之趨勢;CO之排放濃度隨著溫度之升高有遞減之趨勢;CO2之排放濃度隨著溫度之升高有遞增之趨勢;PM10之排放濃度隨著溫度之升高有遞減之趨勢。且根據農業廢棄PP塑膠布之焚化試驗結果顯示,焚化效率隨著溫度之升高有遞增之趨勢,且爐床溫度在700℃(含)以上時之焚化效率達94%(含)以上,顯示本焚化爐之焚化效率極佳。
本研究利用BFBI焚化爐進行農業廢棄PE、PP及PVC等塑膠布之焚化試驗,廢氣採樣分析結果顯示,在500、600、700、800、900及1000℃等不同焚化溫度下,16種PAHs之總排放濃度以700℃時為最少量或並無PAHs污染物生成;又自焚化後灰燼之組成份採樣分析結果顯示,飛灰及底灰中所含之碳、氫可燃成份,以焚化溫度為700℃時最低。故可判定700℃為本焚化爐之最佳操作溫度。
This study was based on the analysis results of the physical and chemical characteristics of the agricultural wastes: For example the used plastic sheets from agricultural production and sick-and-dead pigs (L.Y.D.3 male pig), etc., as well as the combustion and mass-energy balances theories of the agricultural wastes, together with the main parameters of the incinerator design and operation, etc. In order to design and manufacture a middle Laboratory-scale Bubbling Fluidized Bed Incinerator (BFBI). Moreover, through the fluidized theory, numerical simulation analysis and experimental measurements etc., to determine the relationship between the fluidized gas flow velocity and pressure drop within the fluidized bed incinerator. In order to prove and confirm the fluidized characteristics of the bed sand (silica sand) of the BFBI developed by oneself. Finally, the incinerations of the agricultural wastes were being tested. The sample analysis from the emission pollutants and ash discharged through incinerating, in order to set up the optimum operation and control system of this incinerator.
This research based on the analysis of the physical and chemical characteristics of agricultural wastes. The standard methods of American Society for Testing Materials (ASTM ) were being used for proximate analysis, higher heating value(HHV)and ultimate analysis. The experimental results indicated that for the entire L.Y.D.3 male pig, the average lower heating value (LHV) and the average rate for the moisture content were 5763.65kcal/kg and 65.86%wb, respectively; carbon content was 55.27%, and oxygen content was 23.53% on average. These showed that L.Y.D.3 male pig''s body had high heat and moisture contents, as well as high carbon and oxygen content organic fuel. Moreover, the agriculture discarded plastic films, such as PP, PE, PVC and PS, etc., contained up to more than 95% carbons and hydrogen combustible compositions, as well as the LHV all reached 10000 kcal/kg, had extremely higher chemical heat compound, together with the moisture content and ash were all extremely low (under 1% on average). According to the analysis result of the physical and chemical characteristics of the agricultural wastes can be concluded that the method of incinerating to deal with these agricultural wastes was considered as the optimal and feasible method.
The research also based on the L.Y.D.3 male pig''s chemical compositions weight percentage and actual measurement value of HHV, through the regression analysis by SAS software, can develop the correlation models accurately in order to determine the HHV of pigs (their correlation coefficients all reached to R2 =0.65), as well as to build up a set of standard research approach formulae for the prediction of the HHV of bio-fuel.
This research through the methods of fluidized theory, the numerical simulation analysis, and the experimental measurement to prove that relationship between the fluidized characteristics and pressure drops of the BFBI. To determine that change flows within the incinerator, as well as to set up a saving time and effective method for bubbling fluidized bed incinerator numerical simulation. This study used the computational fluid dynamics (CFD) to determine relationship between the superficial velocity and pressure drop in BFBI. According to results of the numerical simulation showed that the linear equation had a significant relationship between the superficial velocity and pressure drop. When the superficial velocity of bed is 0.188m/s, the pressure drop equaled to 4562.499Pa was close to the result of the experimental calculating value (4573.33Pa) extremely. So this research adopted the superficial velocity 0.188m/s to be regarded as the minimum fluidization velocity when incinerated experiments. This research utilized 3 kinds of different assumption formulae with drag coefficient and Reynolds numbers to obtain the terminal velocity of bed particle was 3.684m/s. And then, confirmed that the superficial velocity must be limited between minimum fluidization velocity and terminal velocity in the BFBI.
This research utilized the BFBI to incinerate the agriculture discarded plastic film of PP. Under the regular feed rate and oxygen support, combustion temperature from 500 to 1000℃, the sampled emission gas and the analysis results showed that: the emission trend of SO2 slightly decreased progressively with the increase of temperature; the emission trend of NO was increased progressively as the increase of temperature; the emission trend of CO decreasing progressively as the increase of temperature; the emission trend of CO2 increasing progressively as the rising of temperature; the emission trend of PM10 decreasing progressively as the rising of temperature, respectively. The results showed based on the result of the incineration experiments of agriculture discard plastic film of PP, there was an increasing progressively trend with the increase of the temperature to incineration efficiency, and the incineration efficiency at the above of 700℃ (include) of bed temperature was up to 94% (include) above, showed that the incineration efficiency of the BFBI is extremely well.
This research utilized the BFBI to incinerate the agriculture discards plastic films, such as PE, PP and PVC, etc. The analysis results of the emission gas sample showed that incineration under difference temperatures 500, 600 , 700 , 800 , 900 and 1000℃, etc., the total emission of 16 kinds of PAHs was less or there was no PAHs emission at 700℃. Ashes composition was sampled and analyzed after incinerating; the results indicated that combustible carbon and hydrogen which included in fly ash and bottom ash were lowest with incinerating temperature at 700℃. Therefore, the results proved that 700℃ was the optimal operation temperature for the BFBI.
誌 謝 i
摘 要 ii
Abstract iv
目 錄 vi
圖目錄 ix
表目錄 xi
符號說明 xiii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 4
第二章 文獻探討 5
2.1 塑膠聚合物之熱裂解研究 5
2.2 國內對於焚化農業廢棄物之相關研究 10
2.3 燃燒與熱值 11
2.4 塑膠聚合物之燃燒過程 11
2.5 聚合物燃燒量之計算 12
2.6 聚合物之燃燒速率與焚化時間之預測 13
2.7 流體化床在廢棄物焚化之應用、焚化特性與優點 15
第三章 廢棄物焚化原理 15
3.1 燃燒與焚化之意義 15
3.2 焚化之目的 16
3.3 焚化基本化學反應 16
3.3.1 含碳(C)廢棄物 17
3.3.2 含碳氫化合物(CxHyOz)之廢棄物 17
3.3.3 含氮(N)廢棄物 18
3.3.4 含氯(Cl)廢棄物 19
3.3.5 含硫(S)廢棄物 19
3.4 質能平衡 20
3.4.1 熱化學 20
3.4.1.1燃燒反應熱 20
3.4.1.2 煙氣熱焓 21
3.4.2 質量平衡 22
3.4.2.1 燃燒所需理論空氣量 23
3.4.2.2 實際空氣量 23
3.4.2.3燃燒生成氣體量 23
3.4.2.4 燃燒生成氣體總排放量 24
3.4.3 能量平衡 25
3.5 燃燒基本反應動力學 26
3.5.1反應速率 26
3.5.2濃度對速率方程式之影響 27
3.5.3溫度對反應速率之影響 28
3.6 燃燒與焚化效率 29
3.7 焚化破壞去除率 29
3.8 流體化床焚化爐之流體化原理 30
3.9 流體化床焚化爐燃燒特點 31
3.10 氣泡式流體化床焚化爐之構造及廢棄物焚化理論 32
3.11 氣泡式流體化床焚化爐之焚化操作技術 33
3.12 焚化產生粒狀污染物與毒性廢氣PAHs(多環芳香烴化合物)之探討 35
3.13多環芳香烴化合物(Polycylic Aromatic Hyclrocrbons ; PAHs)之生成機制 35
3.14 廢塑膠熱分解機制之探討 36
3.15 PAHs對生物致癌與致突變性(Mutagenicity)能力探討 39
第四章 實驗設備、材料與方法 43
4.1 試驗材料、儀器設備與分析方法 43
4.1.1農業廢棄物之物理與化學性質分析 44
4.1.2病死豬之物理與化學性質分析方法 44
4.2 農業廢棄物焚化研究 47
4.2.1氣泡式流體化床焚化爐系統之設計與研製 47
4.2.2氣泡式流體化床焚化爐流體化速度及壓降之量測與模擬分析 58
4.2.2.1床質(Bed material)之特性與床壓降(Bed pressure drop)對流體化影響之探討 58
4.2.2.2床質(矽砂)性質之研究 59
4.2.2.3 最小流體化速度(Minimum Fluidization Velocity)與床壓降(Bed Pressure Drop)之量測 61
4.2.2.4 流化床最大流體化速度(Maximum Fluidization Velocity)-終端速度(Terminal Velocity)之計算 62
4.2.2.5試驗模式 64
4.2.2.6 數值模擬 70
4.3 焚化爐排放廢氣中污染物之採樣分析方法 73
4.3.1 焚化廢氣中PAHs之採樣分析步驟與方法 74
4.3.2 焚化灰燼之組成份採樣分析 76
第五章 結果與討論 78
5.1 廢棄物之物理與化學性質分析結果 78
5.1.1 病死豬之物理與化學性質分析結果 78
5.1.2 農業廢棄塑膠布之物理與化學性質分析結果 82
5.2 氣泡式流體化床焚化爐流體化速度及壓降之量測與模擬分析結果 82
5.3 焚化廢氣中污染物之採樣分析結果 91
5.3.1 焚化農業廢棄PP塑膠布排放廢氣中污染物質之分析結果 91
5.3.2 焚化農業廢棄PP塑膠布之焚化效率 95
5.3.3 焚化農業廢棄塑膠布排放廢氣中16種PAHs之分析結果 95
5.3.3.1 BFBI焚化爐空白試燒試驗 95
5.3.3.2 焚化農業廢棄PE塑膠布排放廢氣中16種PAHs之分析結果 97
5.3.3.3焚化農業廢棄PP塑膠布排放廢氣中16種PAHs之分析結果 98
5.3.3.4焚化農業廢棄PVC塑膠布排放廢氣中16種PAHs之分析結果 100
5.3.4 焚化農業廢棄塑膠布焚化灰燼之組成份採樣分析結果 101
第六章 結論與建議 104
參考文獻 106
附錄 115
1.王岱淇、馮丁樹。1993。農業品廢棄物焚化物性之研究。農業機械學刊。2(4):1-12。

2.王岱淇、馮丁樹、1994。高濕穗軸在燃燒爐之燃燒分析及其顯熱輸出模式之探討。農業機械學刊。3(1):31-46。

3.尤建華。1993。塑膠焚化過程中PAHs及粒狀污染的生成與控制。博士論文。台北:台灣大學環境工程學研究所。

4.朱正先。1995。氣泡式流體化床焚化爐之構造及焚化污泥之操作技術。工業污染防治。53:99-112。

5.江康鈺、張木彬、王鯤生。1995。含戴奧辛廢棄物焚化處理技術之回顧與評析。工業污染防治。54:127-150。

6.吳中興。1987。玉米穗軸燃燒爐之研製與試驗。中國農業工程學報。33(1):92-98。

7.吳中興。1988。玉米穗軸燃燒爐紊流分析。中國農業工程學報。34(1):61-76。

8.吳中興。1994。玉米穗軸焚化爐三維流場模擬。農業機械學刊。3(3):1-14。

9.洪偉智、陳世銘。1989。以電腦模式估算速溶茶之質傳性質。農業工程學報35(1):52-58。

10.陳世銘, S. Whitaker。1987。 恆率乾燥期間非壓實多孔物質之水份分佈─擴散理論之不適用。 農業工程學報。33(4):82-89。

11.陳世銘、薛文珍。1988。非均勻穀床之風場分佈。農業工程學報。34(2):37-48。

12.陳世銘、洪偉智。1988。以實驗方法研究速溶茶之質傳性質。農業工程學報。34(3):117-123。

13.陳世銘。1989。清選器之電腦輔助設計。農業工程學報。 35(1):28-37。

14.章裕民、羅有福、呂明山、何錦城、1990。流體化床燃燒之研究。˝第六屆事業廢棄物處理技術研討會˝,19-31。台北:行政院環保署。

15.張一岑。1991。有害廢棄物焚化技術。初版。台北:聯經。

16.張尊國。1985。垃圾處理時塑膠物質之分解過程。˝第一屆廢棄物處理技術研討會論文集˝,368-371。台北:台灣大學環工所。

17.蔣本基、尤建華、張勝棋、張坤田。1992。塑膠熱分解過程中PAHs的生成與粒狀污染物毒性探討。出自˝第九屆空氣污染控制技術研討會論文專輯˝,61-72。台南成功大學:中國環境工程學會。

18.鄭景亮、吳中興。1986。玉米穗軸燃燒爐及其集塵系統之理論分析。中國農業工程學報。32(1):58-93。

19.蔡慶隆、陳貽倫。1984。稻殼燃燒熱能利用之研究。中國農業工程學報。30(4):107-113。  

20.謝錦松、黃正義。1988。固體廢棄物處理。三版。台北市:淑馨出版社。

21.魏耀輝、張勝祺。1988。台北地區空氣中懸浮微粒之致突變性及多環芳香烃化合物之測定。陽明醫學院研究報告。

22.台灣區肉品發展基金會。1992。肉豬屠體部位肉分切規格。出自˝台灣區肉品發展基金會編˝,8。台北:台灣區肉品發展基金會。

23.台灣農業年報。2005。行政院農業委員會。

24.行政院環境保護署九十四年統計年報。

25.Albert, R. A. 1989. Thermodynamics of the formation of Benzene series Polycyclic
Aromatic Hydrocarbons in a Benzene Flame. Journal Phys. Chem. 93:3299

26.Allen, T. 1981. Particle size measurement. Chapman and Hall, London.

27.Anon. 1981. Annual book of ASAE standard. American society for Agricultural engineering.
28.Anon. 1983. Annual book of ASTM standards. American society for testing materials. Philadelphia, PA.

29.ASTM . 2003. Active Standard C127-04 Standard Test Method for Density.

30.Axelbaum, R. L. and C. K. Law. 1988. Twenty-Third Symposium on combustion. The Combustion Institute, Pittsburgh. P.1067.

31.Babu, J. Alappat; Rane, V. C. 1996. Studies on a recirculating fluidized-bed incinerator-cold model. International Journal of Energy Research. 20. 313-326.

32.Babu, S. P.; Shan, B.; Talwalkar, A. 1978. Fluidization correlation for coal gasfication materials-minimum fluidization velocity and fluidized bed expansion ratio. AIChE Symp. Ser. 74(176). 176-186.

33.Bouillard, J. X.; Lyczkwski, R. W.; Gidaspow, D. 1989. Prosity distribution in a fluidized bed with an immersed obstacle. AIChE J. 35. 908-922.

34.Brame, J. S. S. and J. G. King. 1967. Fuel: solid, liquid, and gaseous. St. Martin’s Press. New York . NY.

35.Chian, P. C., J. H. You, S. C. Chang, and Y. H. Wei. 1989. Characterization of toxic pollutants from incineration of plastics. Proceedings of the 8th World Clean Air Congress. The Hange, The Netherlands. Vol.4.

36.Chitester, D. C.; Kornosky, R. M.; Fan, L. S.; Danko, J. P. 1984. Characteristics of fluidization at high pressure. Chem. Engineering. Sci. 39(2). 253-261.
37.Ching-Cherng Ju.1994.Treatment and Review for the Sick-and-Dead Pork Problems.Agricultural Policy and Review eng. (26):22~26.

38.Chung-Hsing Wu. And Feng-Jehng Wang. 1986. Estimation of Heating Value of an Incinerated Pig from the Heat Content of Each Component. J.of the Biomass Energy Society of China.15(3-4):140-146.


39.Cullis, C. F. and M. M. Hirschler . 1981. The combustion of organic polymers. Published in the USA. by Oxford University Press, New York.

40.Davidson, J. F.; Harrison, D. 1971. Fluidization. Academic Press. London. 25.

41.Davis, T. E., Tobias, R. L. and Peterli, E. B. 1962. Thermal degradation of polypropylene. Journal of Polymer Science. 56: 485-499。

42.Ding, J.; Gidaspow, D. 1990. A bubbling fluidization model using kinetic theory description. AIChE J. 36. 523-538.

43.Dry, R. J.; Judd, M. R.; Shingles, T. 1983. Two-phase theory and fine powers. Powder Technology. 34. 213-223.

44.Dry, R. J. 1987. Radial concentration profiles in a fast fluidized bed. Powder Technology. 49, 37-44.
45.Ebeling, J.M. and B.M. Jenkins. 1985. Physical and chemical properties of biomass fuels. TRANSATIONS of the ASAE, 28(3):898-902。

46.Ergun, S. 1952. Fluid flow through packed columns. Chemical Engineering Progress. 48(2). 89-94.

47.Garg, S. K.; Pritchett, J. W. 1975. Dynamics of gas-fluidized beds. J. Appl. Phys. 46. 4493.

48.Gaskill, J. R. 1970. Smoke development in polymers during pyrolysis or combustion.

49.Paper originally presented at the 1970 polymer conference series, University of Utah.

50.Geldart, D. 1972. The effect of particle size and size distribution on the behavior of gas-fluidized bed. Powder Technology. 6. 201-215.

51.Geldart, D. 1973. Types of gas fluidization. Powder Technology. 7. 285-292.

52.Geldart, D.; Harnby, N.; Wong, A. C. 1984. Fluidization of cohesive powders. Powder Technology. 37. 25-37.
53.Geldart, D. 1986. Single particles, fixed and quiescent beds. Gas Fluidization Technology. D. Geldart, Ed., John Wiley and Sons. Ch. 2.

54.Gera, D.; Gautam, M.; Tsuji, Y.; Kawaguchi, T.; Tanaka, T. 1998. Computer simulation of bubbles in large-particle fluidized beds. Powder Technology. 98. 38-47.

55.Gerreard and F. Mallion. 1980. The Complete Book of Meat, 2nd Ed. Virtue and Company Limited, Coulsdon, Surry, U.K. P.363.

56.Gidaspow, D. 1994. Multi-phase flow and fluidization, continuum and kinetic theory description. Academic Press, New York. Glassman,I. 1987. Combustion. Academic Press,Inc.

57.Glassman, I. 1988. Soot formation in combustion process. Twenty-second Symposium international combustion. The combustion institute. P.295.

58.Grace, J. R. 1982. Fluidization bed hydrodynamic, in Handbook of Multiple Systems. Gad Hestroni, ed., McGraw-Hill. New York. Ch.8.

59.Hilado, C.J. 1970. The effect of chemical and physical effect on smoke evolution from polymers.University of Detroit polymer conference series, June.

60.Holman. 1990. Heat Transfer.全華圖書公司代理.

61.Jackson, R. 1963. The mechanics of fluidized beds. Trans. Inst. Chem. Eng. 41. 13-20.

62.Jenkins, J. T.; Savage, S. 1983. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130. 187-202.

63.Kaminsky, W., Menzel, J. and Sinn, H. 1976. Recycling of plastics. Conversion & Recycling. 1(1): 91-110.

64.Kanury. A.M. 1977. Introduction to combustion phenomena. Gordon and Breach Science Publishers.

65.Kawaguchi, T.; Tanaka, T.; Tsuji, Y. 1998. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models). Powder Technology. 96. 129-138.

66.Kishore, K. and Nagarajan, R. 1987. Polymer combustion:A review journal of polymer engineering. 7(4):104-112.

67.Kobayashi, N.; Yamazaki, R.; Mori, S. 2000. A study on the behavior of bubbles and solids in bubbling fluidized beds. Powder Technology. 113. 327-344.

68.Kootstra, A., T. J. Slaga and D. E. Olins. 1979. Studies on the binding of Bap Diol epoxide to DNA and Chromatin. Polynuclear Aromatic Hydrocarbons. Third International Symposium on Chemistry and Biology-Carcinogenesis and Mutagenesis.
69.Edited by P. W. Jones and P. Leber. Ann Arbor Science Publishers, Inc. p.455.

70.Kuipers, J. A. M.; Duin, K. J.; Beckum, F. P. H.; Swaaji, W. P. M. 1992. A numerical model of gas-fluidized bed. Chem. Eng. Sci. 47. 1913-1924.

71.Kumar, K., S. Bal and T. P. Ojha. 1987. Methods of determining heat potentials of agricultural biomass. Agricultural Mechanization in ASIA, AFRICA and LATIN AMERICA, 28(2):71-73.

72.Kunii, D.; Levenspiel, O. 1978. Fluidization engineering. John Wiley, New York. 1969.

73.Launder, B. E.; Spalding, D.B. 1972. Lectures in mathematical models of turbulence. Academic Press. London, England.
74.Lessons on Meat. The National Live Stock and Meat Board 444 North Michigan Avenue Chicago, Illinois. P46.
75.Lun, C. K. K.; Savage, S. B.; Jeffrey, D. J.; Nichepurniy, N. 1984. Kinetic Theory for granular flow: inelastic particles in coquette flow of singly inelastic particles in a general flow field. J. Fluid Mech. 140. 223-256.


76.McCabe, Smith and Harriott. 1989. Unit Operations of Chemical Engineering.高立圖書公司.

77.McMurry, J. 1986. Foundamentals of Organic Chemistry. Brooks/Cole Publishing Company. P.250.

78.Menzien, C. A., Potocki, B. B., and Santodonato, J. 1922. Exposure to Carcinogenic PAHs in the environmental. Environment Science and Technology. 26(7): 1278-1284.

79.Mikami, T. 1998. Agglomerating fluidization of liquid/solid bridging particles and its control. Doctor Thesis of Tokyo Univ. of Agriculture and Tech.

80.Motikawa, T. 1984. Evolution of Soot and Polycyclic Aromatic Hyclrocrbons from combustion and pyrolysis of polymers and low molecular weight hydrocarbons. Fire Science and Technology. 4(1):27.
81.Nissen, W.R.1987. Combustion and Incineration Process. Marcel Dekker, Inc.

82.Panlman, R. and O. Pelkonen. 1987. Mutagenicity Studies of different Polycyclic Aromatic Hyclrocrbons:The Significances of Enzymatic Factors and Molecular Structure. Carcinojenesis. 8(6):776-778.

83.Payne, F.A. 1984. Energy and mass flow computation in biomass combustors. TRANSACTIONS of the ASAE. 28(6):2037-2041.

84.Reed, T, B. 1981. Biomass gasification: principles and technology. Reed, T, B. ed. Noyes Data Corporation. NJ.

85.Rowe, P. N.; Yacono, C. X. R. 1976. The bubbling behavior of fine powders when fluidized. Chm. Engng. Sci. 31. 1179-1192.

86.Richardson, J. F. 1971. Incipient fluidization and particle system, in fluidization. Davidson, J. F. and D. Harrison. Eds., Academic Press. New York.

87.Sabreiro, L. E. L.; Monteiro, J. L. F. 1982. The effect of pressure on fluidized bed behavior. Powder Technology. 33. 95-100.


88.Samuelsberg, A.; Hjertager, B. H. 1996. An experimental and numerical study of flow patterns in a circulating fluidized bed reactor. Int. J. Multiphase Flow. 22. 575-591.

89.Savage, S. 1990. Streaming motions in a bed of vibrationally fluidized dry granular material. J. Fluid Mech. 194. 457-478.

90.Saxena, S. C.; Vogel, G. J. 1977.The measurement of incipient fluidization velocities in a bed of coarse dolomite at temperature and pressure. Trans. Inst. Chem. Engr. 55. 184-189.

91.Schmitt, C.R. 1976. Thermal degradation characteristics of various polymeric materials. Pyrolysis polymers, Technical Publishing Co., Inc.256 Post road West. P.113.

92.Schnabel, W. 1981. Polymer degradation principles and practical. By Macmillan Publishing Co.,Inc.

93.Scola, R. and Santos, J.S. 1978. Fluidized bed incinerator for disposal of propllbants and explosives. U.S. Army Armament Researd and Developpment Command, Oct. 29.

94.Soo, S. L. 1967. Fluid dynamics of multiphase system. Blaisdell, Waltham, MA.

95.Todes, O. M.; Goroskhov, V. D. 1957.Preceding of the USSR Symposium on Processes with Fluidized Beds. Gostechnika USSR, Moscow.

96.USEPA. 1973. Municipal waste water sluge combustion technology. EPA/652/4-85/015.

97.USEPA. 1987. Locating and estimating air emission from sources of Polycyclic Organic Matters(POM). EPA-450/4-84-007.

98.Venkatesh, S. and K. Saito. 1992. Estimates on effect of chlorine on the global soot production rates in laminar hydrocarbon-air diffusion flames. Combust. Sci and Tech. 85:297.


99.Wall,L. A. 1972. Pyrolysis of polymer. National bureau of standards special publication 357. the methanisms of pyrolysis, oxidation, and burning of organic materials. Proceedings of the 4th materials research symposium. Oct. 26-19, Gaithersburg, Md( Issued June 1972 ).

100.Wen, C. Y.; and Yu, Y. H. 1966. Mechanics of fluidization. Chem. Eng. Progr. Symp. Ser. 62(62). 100-111.

101.Xu, B. H.; Yu, A. B. 1997. Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computation fluid dynamics. Chem. Eng. Sci. 52. 2785-2809.

102.Yii-Shian Wang.and Yuh-Min Jang.Wastes Management.Taipei.Wen-Jing Books Ltc.1st ed.317~322.

103.Zenz, F. A. 1984. Fluidization phenomena and fluidized bed technology. Handbook of Powder Science and Technology. Nostrand Reinhold Company, New York. Ch.10.

104.荏原製作所。1976。荏原旋回流型流動床焚化設施說明資料。

105.鳩田吉英,山口達明,西崎寬樹,山口真。1983。塑膠廢料有效利用。賴耿陽編譯。p.131-214。1987年1月再版。台南:復漢出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top