跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/09 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康家豪
研究生(外文):Chia-Hao Kang
論文名稱:以DNA微陣列分析slpslp突變水稻之幼花序基因表現
論文名稱(外文):Analysis of gene expression in slpslp (stunted lemma and palea)rice inflorescence by DNA microarray
指導教授:劉麗飛
指導教授(外文):Li-Fei Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:45
中文關鍵詞:水稻內穎外穎差異表現基因DNA微陣列
外文關鍵詞:Oryza sativapalealemmadifferential exrpression geneDNA microarray
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水稻穎花發育會影響榖粒大小,進而影響最終產量。本研究嘗試尋找與內外穎發育有關的基因,試驗材料得自農業試驗所水稻研究室,係以疊氮化鈉(sodium azide)誘導之水稻穎花突變體。其突變性狀有兩種變化,一種是內外穎退化(slp, stunted lemma and palea),另一種是小穎花,內外穎只有正常穎花的一半。小穎花突變體自交後代會產生正常型穎花(SLPSLP)、小穎花突變體(SLPslp)及內外穎退化突變體(slpslp),分離比約為1:2:1,符合孟德爾單一基因分離模式。本試驗分別剝取正常型穎花及內外穎退化突變型穎花水稻之幼花序(<5 mm),萃取total RNA,利用高通量(high-throughput)的DNA微陣列分析技術,全面分析兩種型態幼花序基因表現之不同。
本試驗之微陣列分析,將正常型穎花幼花序(SLPSLP)設定為對照組,內外穎退化突變型穎花(slpslp)幼花序設定為實驗組,進行基因差異表現比較分析,獲得實驗組比對照組,表現上升兩倍以上的基因有322個,表現下降兩倍的基因有92個,分別各選取3個基因利用Q-PCR(quantitative PCR),驗證微陣列試驗結果之正確性。本研究結果與劉(2003)使用cDNA-AFLP所篩選的差異表現基因,相互比較,發現其中僅有一個salT基因表現趨勢一致,都在slpslp幼花序會大量表現。進一步以基因功能性將差異表現之基因進行分群,上升表現之基因可分為18群,下降表現之基因可分為9群,其中各有一群為轉錄因子。有17個轉錄因子在slpslp幼花序有上升表現兩倍以上之情形;5個轉錄因子則被抑制表現兩倍以上,本研究進一步探討這些轉錄因子與slpslp幼花序異常表現基因之間的關係。此外,篩選slpslp幼花序的差異表現基因中,獲得一個MADS相關基因表現受到抑制及一個AUX/IAA相關基因會大量表現,推測可能與slpslp穎花發生異常有關。本研究將差異表現基因繪製成基因圖譜,觀察基因於染色體上之分佈是否有特別密集的區域,可能與突變基因有關,此結果可以幫助預測突變基因所在位置,提供後續試驗一個參考的方向。
The size and shape of lemma and palea can determine the rice grain size, and influence final yield of rice. In this study, a mutated rice induced by sodium azide, is used to study genes that regulate development of lemma and palea. This mutant has two different mutated phenotypes. The homozygous line shows stunned lemma and palea(slpslp), and heterozygous line shows small lemma and palea(SLPslp), which are only half in length compared to the normal one. Self-crossing of heterozygous line(SLPslp) can produce three different types of lemma/palea phenotype; one is normal(SLPSLP), another is SLPslp, and the other is slpslp. The segregation ratio is close to 1:2:1, which fits to single gene model according to the Mendel’s first law. To investigate the difference of gene expression between SLPSLP and slpslp, young inflorescences(< 5 mm) were collected and used for DNA microarray analysis.
From DNA microarray result, 322 up-regulated genes and 92 down-regulated genes were obtained by screening the gene expression with over 2-fold chang between slpslp and SLPSLP inflorescences. The microarray result was confirmed by using Q-PCR of 6 genes in up-or down-regulated gene categories. Comparing both results from DNA microarray and cDNA-AFLP(Liu, 2003), it was found that only salT gene was consistently highly expressed in slpslp inflorescence. After annotation, there are 126 and 40 known genes up-regulated and down-regulated respectively. Furthermore, 126 up-regulated gene were classified into 18 groups, 40 down-regulated gene were classified into 9 groups. In this study, we focused on transcription factors(TF) and analysed their relationship among differentially expressed genes. As so far, it needs more evidence to proof this relationship. However, there are two genes, OsMADS55 and OsIAA9, inhibited and enhanced, respectively in slpslp inflorescence might have effects on lemma/palea development and are worth studying further. Therefore, we made a gene map that descripe the differential expression gene distributing on chromosomes. This map can help to realize the location on chromosome of the mutant gene.
目 錄
目 錄 i
縮寫對照表 iii
中文摘要 iv
英文摘要 vi
壹、前 言 1
貳、文獻回顧 3
I. 水稻穎花發育之研究 3
II. 小穎花突變體SLPslp及內外穎退化突變體slpslp之研究 5
III. 水稻基因體計畫及DNA微陣列技術(DNA microarray)之利用 7
IV. Auxin對花之生長發育的影響 9
參、材料與方法 11
I. 材料 11
II. RNA之製備 11
III. DNA微陣列分析 14
IV. 基因分群分析 16
V. DNA微陣列試驗結果印證 16
VI. PCR擴增片段定序 19
VII. 基因表現之定量分析 21
VIII. 序列查詢及比對 22
IX. 基因圖譜繪製 23
肆、試驗結果 24
I. 材料收集 24
II. RNA製備及品質測試 24
III. DNA微陣列分析試驗 25
IV. DNA微陣列試驗結果之印證 26
V. DNA微陣列與cDNA-AFLP篩選SLPSLP及slpslp幼花序差異表現基因結果之比較 28
VI. 基因分群 29
VII. 轉錄因子分群 29
VIII. 差異表現基因與轉錄因子的關係 30
IX. 差異表現基因圖譜分析 31
伍、討 論 32
I. 材料收集的改進 32
II. DNA微陣列的優勢 33
III. 差異表現基因的分析 34
IV. 差異表現基因與內外穎退化突變體slpslp的關係 36
V. 差異表現基因圖譜分析 39
VI. 未來展望 39
參考文獻 41
圖表.................................................................................................................................46
附表.................................................................................................................................65
曾東海、鄭清煥、陳治官、顏信沐、鄭統隆、卓緯玄和王強生 (2003) 水稻臺農67號同源突變系對褐飛蝨之抗性探討。中華農藝學會九十二年會作物科學講座暨研究成果發表會。 中華農藝學會。第30頁。
劉昌郎 (2003) 水稻內外穎退化突變體相關農藝性狀及基因表現之研究。臺灣大學農藝系碩士論文。
林雅芬 (2005) 水稻穎花相關基因之研究。臺灣大學農藝系碩士論文。
Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes Involved in Organ Separation in Arabidopsis: An Analysis of the cup-shaped cotyledon Mutant. Plant Cell 9, 841-857.
Benjamins, R., Quint, A., Weijers, D., Hooykaas, P., and Offringa, R. (2001). The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057-4067.
Bennett, S.R.M., Alvarez, J., Bossinger, G., and Smyth, D.R. (1995). Morphogenesis in pinoid Mutants of Arabidopsis-Thaliana. Plant Journal 8, 505-520.
Berleth, T., Krogan, N.T., and Scarpella, E. (2004). Auxin signals - turning genes on and turning cells around. Current Opinion in Plant Biology 7, 553-563.
Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., and Benfey, P.N. (2003). A gene expression map of the Arabidopsis root. Science 302, 1956-1960.
Cheng, Y., and Zhao, Y. (2007). A Role for Auxin in Flower Development. Journal of Integrative Plant Biology 49, 99-104.
Christensen, S.K., Dagenais, N., Chory, J., and Weigel, D. (2000). Regulation of auxin response by the protein kinase PINOID. Cell 100, 469-478.
de Folter, S., and Angenent, G.C. (2006). trans meets cis in MADS science. Trends in Plant Science 11, 224-231.
Ferrario, S., Immink, R.G., and Angenent, G.C. (2004). Conservation and diversity in flower land. Current Opinion in Plant Biology 7, 84-91.
Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B.F., Ljung, K., Sandberg, G., Hooykaas, P.J.J., Palme, K., and Offringa, R. (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862-865.
Furutani, I., Sukegawa, S., and Kyozuka, J. (2006). Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant Journal 46, 503-511.
Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R.L., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchinson, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J.P., Miguel, T., Paszkowski, U., Zhang, S.P., Colbert, M., Sun, W.L., Chen, L.L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y.S., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296, 92-100.
Hardtke, C.S., and Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO Journal 17, 1405-1411.
Hirochika, H. (2001). Contribution of the Tos17 retrotransposon to rice functional genomics. Current Opinion in Plant Biology 4, 118-122.
Ikeda, K., Sunohara, H., and Nagato, Y. (2004). Developmental course of inflorescence and spikelet in rice. Breeding Science 54, 147-156.
Itoh, J., Nonomura, K., Ikeda, K., Yamaki, S., Inukai, Y., Yamagishi, H., Kitano, H., and Nagato, Y. (2005). Rice plant development: from zygote to spikelet. Plant and Cell Physiology 46, 23-47.
Itoh, T., Tanaka, T., Barrero, R.A., Yamasaki, C., Fujii, Y., Hilton, P.B., Antonio, B.A., Aono, H., Apweiler, R., Bruskiewich, R., Bureau, T., Burr, F., Costa de Oliveira, A., Fuks, G., Habara, T., Haberer, G., Han, B., Harada, E., Hiraki, A.T., Hirochika, H., Hoen, D., Hokari, H., Hosokawa, S., Hsing, Y., Ikawa, H., Ikeo, K., Imanishi, T., Ito, Y., Jaiswal, P., Kanno, M., Kawahara, Y., Kawamura, T., Kawashima, H., Khurana, J.P., Kikuchi, S., Komatsu, S., Koyanagi, K.O., Kubooka, H., Lieberherr, D., Lin, Y.-C., Lonsdale, D., Matsumoto, T., Matsuya, A., McCombie, W.R., Messing, J., Miyao, A., Mulder, N., Nagamura, Y., Nam, J., Namiki, N., Numa, H., Nurimoto, S., O''Donovan, C., Ohyanagi, H., Okido, T., Oota, S., Osato, N., Palmer, L.E., Quetier, F., Raghuvanshi, S., Saichi, N., Sakai, H., Sakai, Y., Sakata, K., Sakurai, T., Sato, F., Sato, Y., Schoof, H., Seki, M., Shibata, M., Shimizu, Y., Shinozaki, K., Shinso, Y., Singh, N.K., Smith-White, B., Takeda, J.-i., Tanino, M., Tatusova, T., Thongjuea, S., Todokoro, F., Tsugane, M., Tyagi, A.K., Vanavichit, A., Wang, A., Wing, R.A., Yamaguchi, K., Yamamoto, M., Yamamoto, N., Yu, Y., Zhang, H., Zhao, Q., Higo, K., Burr, B., Gojobori, T., Sasaki, T., and for the Rice Annotation, P. (2007). Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res. 17, 175-183.
Jacobsen, S.E., and Olszewski, N.E. (1996). Gibberellins regulate the abundance of RNAs with sequence similarity to proteinase inhibitors, dioxygenases and dehydrogenases. Planta 198, 78-86.
Jeon, J.S., Lee, S., Jung, K.H., Yang, W.S., Yi, G.H., Oh, B.G., and An, G.H. (2000a). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Molecular Breeding 6, 581-592.
Jeon, J.S., Jang, S., Lee, S., Nam, J., Kim, C., Lee, S.H., Chung, Y.Y., Kim, S.R., Lee, Y.H., Cho, Y.G., and An, G. (2000b). leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12, 871-884.
Krizek, B.A., and Fletcher, J.C. (2005). Molecular mechanisms of flower development: An armchair guide. Nature Reviews Genetics 6, 688-698.
Lee, D.Y., Lee, J., Moon, S., Park, S.Y., and An, G. (2007). The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem. Plant Journal 49, 64-78.
Lee, S., Kim, J., Son, J.-S., Nam, J., Jeong, D.-H., Lee, K., Jang, S., Yoo, J., Lee, J., Lee, D.-Y., Kang, H.-G., and An, G. (2003). Systematic Reverse Genetic Screening of T-DNA Tagged Genes in Rice for Functional Genomic Analyses: MADS-box Genes as a Test Case. Plant Cell Physiol. 44, 1403-1411.
Li, Q.Z., Li, X.G., Bai, S.N., Lu, W.L., and Zhang, X.S. (2002). Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta 215, 533-540.
Luo, Q., Zhou, K.D., Zhao, X.F., Zeng, Q.C., Xia, H.G., Zhai, W.X., Xu, J.C., Wu, X.J., Yang, H.S., and Zhu, L.H. (2005). Identification and fine mapping of a mutant gene for palealess spikelet in rice. Planta 221, 222-230.
Moore, G., Gale, M.D., Kurata, N., and Flavell, R.B. (1993). Molecular Analysis of Small Grain Cereal Genomes - Current Status and Prospects. Bio-Technology 11, 584-589.
Nakamura, A., Umemura, I., Gomi, K., Hasegawa, Y., Kitano, H., Sazuka, T., and Matsuoka, M. (2006). Production and characterization of auxin-insensitive rice by overexpression of a mutagenized rice IAA protein. The Plant Journal 46, 297-306.
Nawy, T., Lee, J.Y., Colinas, J., Wang, J.Y., Thongrod, S.C., Malamy, J.E., Birnbaum, K., and Benfey, P.N. (2005). Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17, 1908-1925.
Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y. (1991). Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell 3, 677-684.
Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005a). NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science 10, 79-87.
Olsen, A.N., Ernst, H.A., Lo Leggio, L., and Skriver, K. (2005b). DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science 169, 785-797.
Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. (2003). Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10, 239-247.
Prasad, K., Sriram, Sriram, P., Kumar, S., Kushalappa, K., and Vijayraghavan, U. (2001). Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Development Genes and Evolution 211, 281-290.
Project, I.R.G.S. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Przemeck, G.K.H., Mattsson, J., Hardtke, C.S., Sung, Z.R., and Berleth, T. (1996). Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229-237.
Sato, Y., Nishimura, A., Ito, M., Ashikari, M., Hirano, H.Y., and Matsuoka, M. (2001). Auxin response factor family in rice. Genes & Genetic Systems 76, 373-380.
Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270, 467-470.
Sentoku, N., Kato, H., Kitano, H., and Imai, R. (2005). OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy. Molecular Genetics and Genomics 273, 1-9.
Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A., and Zambryski, P.C. (1997). ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124, 4481-4491.
Shubha Vij ., G.V., Kumar D., Vydianathan R., Raghuvanshi S., Khurana P., Khurana J. P.,and Tyagi A. K. (2006). Decoding the rice genome. BioEssays 28, 421-432.
Takada, S., Hibara, K., Ishida, T., and Tasaka, M. (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128, 1127-1135.
Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y., and Stitt, M. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37, 914-939.
Woodward, A.W., and Bartel, B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany 95, 707-735.
Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A., and Callis, J. (2000). Degradation of Aux/IAA proteins is essential for normal auxin signalling. The Plant Journal 21, 553-562.
Wu, K.L., Guo, Z.J., Wang, H.H., and Li, J. (2005). The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Research 12, 9-26.
Xu, H.Y., Li, X.G., Li, Q.Z., Bai, S.N., Lu, W.L., and Zhang, X.S. (2004). Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Molecular Biology 55, 209-220.
Yamaguchi, T., and Hirano, H.Y. (2006). Function and diversification of MADS-box genes in rice. The scientific world journal 6, 1923-1932.
Yazaki, J., Shimatani, Z., Hashimoto, A., Nagata, Y., Fujii, F., Kojima, K., Suzuki, K., Taya, T., Tonouchi, M., Nelson, C., Nakagawa, A., Otomo, Y., Murakami, K., Matsubara, K., Kawai, J., Carninci, P., Hayashizaki, Y., and Kikuchi, S. (2004). Transcriptional profiling of genes responsive to abscisic acid and gibberellin in rice: phenotyping and comparative analysis between rice and Arabidopsis. Physiol. Genomics 17, 87-100.
Yu, J., Hu, S., Wang, J., Wong, G.K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L., and Yang, H. (2002). A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science 296, 79-92.
Zhou, J.L., Wang, X.F., Jiao, Y.L., Qin, Y.H., Liu, X.G., He, K., Chen, C., Ma, L.G., Wang, J., Xiong, L.Z., Zhang, Q.F., Fan, L.M., and Deng, X.W. (2007). Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Molecular Biology 63, 591-608.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top