跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊為
研究生(外文):Juin-Wei Huang
論文名稱:應用於60GHz室內無線通訊之金氧半場效電晶體接收機前端電路之研製
論文名稱(外文):Design and Implementation of CMOS Receiver Front-Ends for 60 GHz Indoor Wireless Communication
指導教授:汪重光汪重光引用關係
指導教授(外文):Chorng-Kuang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:63
中文關鍵詞:毫米波金氧半場效電晶體接收機
外文關鍵詞:millimeter waveCMOSreceiver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於無線通訊對資料的傳輸速度要求越來越高,使得越來越多的研究著眼在60 GHz這個有7 GHz頻寬的免執照頻段。雖然傳統上,這個頻段多使用載子移動速度較快、崩潰電壓較高的三五族製程來進行電路設計,近年來,由於金氧半互補式(CMOS)製程的進步,CMOS元件已可以操作在毫米波頻段。然而,在這個頻段的主要挑戰來自於,一般用於連接接收機電路與天線的磅線,在這樣高的頻率下會產生非常大的損耗。不過幸運的是,如果如果晶片天線可以被製作在矽基板上且不會產生太大的損耗的話,則磅線所造成的損耗就可以被避免,所以在這本論文中,會主要針對在矽基板上整合60 GHz接收機電路和晶片天線去作研究。
本論文首先對矽基板上的60 GHz晶片天線去作研究與製作。另外,低雜訊放大器在接收機中也是一個很重要的元件,因此低雜訊放大器在60 GHz頻段會發生的問題會先在論文中被討論,並且提出新的放大器架構去解決這些問題。接著,一個包括晶片天線、低雜訊放大器、混波器與震盪器的接收機電路也會被實作及量測。最後並提出一種極適合用來製作微小化電路的傳輸線架構,且利用它來實現一個微小化的60 GHz低雜訊放大器。論文中所有的電路都是選用130奈米的CMOS製程來進行實作。
The need for very high data rate wireless systems has encouraged research interest on use of the 7-GHz unlicensed band around 60 GHz. Although these millimeter-wave circuit blocks are usually designed using III-V technologies because of its higher mobility and breakdown voltage, these years, they can be implemented using CMOS technologies because of the scaling of devices. However, the major challenge is at the interface between the transceiver and antenna, because bond wires usually used as the interface have high loss at 60 GHz. Fortunately, if a low-loss chip antenna on silicon can be implemented, the loss due to bond wires can be eliminated. Therefore, the integration of 60 GHz receiver and chip antenna will be investigated in the thesis.
60-GHz chip antennas on silicon are firstly studied and implemented in this research. Besides, LNA is another critical component in the receiver. Hence the issues with LNA at 60 GHz will be studied and an improved circuit topology will be introduced to resolve them. A receiver consisting of an on-chip antenna, low noise amplifier, mixer and oscillator will then be fabricated. Finally, a new transmission line structure will also be proposed. It is especially suitable to design compact silicon-based passive circuits. A 60-GHz LNA using the proposed transmission line for impedance matching is implemented. All the circuits are fabricated using 130-nm CMOS technology.
Acknowledge i
Abstract iii
Contents vii
List of Figures ix
List of Tables xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Design and Implementation of 60-GHz Chip Antenna . . . . . . . . . . . . . . . . 5
2.1 Findamentals of Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 60-GHz Chip Antenna Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Testing Setup and Measured Results of 60-GHz Chip Antenna . . . . 14
2.4 Summary . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 16
2.5 References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 17
3. Design and Implementation of 60-GHz LNA with Gain Boosting . . . . . . . 18
3.1 Transmission Lines on Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 60-GHz LNA Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4. Design and Implementation of 60-GHz Receiver with an On-Chip Antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 60-GHz Dual-Gate Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 60-GHz Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5. Design and Implementation of 60-GHz Miniature LNA . . . . . . . . . . . . . . . 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Proposed Transmission Line Architecture. . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Performance Comparisons of 4 TLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Simulated and Measured Results of 60-GHz LNA with VGP TL . . . . . . 54
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
[1.1]IEEE 802.15 Working Group for WPAN; http://www.ieee802.org/15/
[2.1] Babakhani, A.; Guan, X.; Komijani, A.; Natarajan, A.; Hajimiri, A., "A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795-2806, Dec. 2006.
[2.2] I-Jen Chen; Huei Wang; Powen Hsu, "A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front end," IEEE Trans. Microwave Theory Tech., vol.51, no.12, pp. 2461- 2468, Dec. 2003
[2.3] Alexopoulos, N.G.; Katehi, P.B.; Rutledge, D.B., "Substrate Optimization for Integrated Circuit Antennas," Microwave Symposium Digest, MTT-S International , vol.82, no.1, pp. 190- 192, Jun 1982
[3.1]T. S. D. Cheung, and J. R. Long, ” Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits”, IEEE J. Solid-State Circuits, Vol. 41, No. 5, pp.1183–1200, May. 2006
[3.2]Maruhashi, K.; Ito, M.; Desclos, L.; Ikuina, K.; Senba, N.; Takahashi, N.; Ohata, K., "Low-cost 60 GHz-band antenna-integrated transmitter/receiver modules utilizing multi-layer low-temperature co-fired ceramic technology," in IEEE ISSCC Dig. Tech. Papers, Feb. 2000, pp. 324-325.
[3.3]Chinh H. Doan, Sohrab Emami, Ali M. Niknejad, and Robert W. Brodersen, ”Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[3.4] T. Yao, M. Gordon, K. Yau, M.T. Yang, and S.P. Voinigescu “60-GHz PA and LNA in 90-nm RF-CMOS,” in IEEE RFIC Symp. Dig., pp. 147-150, Jun. 2006.
[3.5] C. M. Lo, C. S. Lin, and H. Wang, "A miniature V-band 3-stage cascode LNA in 0.13μm CMOS," in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 1254-1263.
[3.6]M.A.T Sanduleanu, “60 GHz Integrated Circuits and Wireless Systems” ESSCIRC Workshop 2006
[3.7]W.R. Eisenstadt, Y. Eo, "S-Parameter-Based IC Interconnection Transmission Line Characterization", IEEE. Trans. Comp., Hvbrids, Manufact. Technol., vol. 15, pp. 383-490, Aug. 1992
[4.1]Yu Su; Jau Lin, Jr. and Kenneth, K.O., "A 20 GHz CMOS RF down-converter with an on-chip antenna," in IEEE ISSCC Dig. Tech. Papers, Feb. 2005, pp. 270-597.
[4.2]K. Maruhashi et al., "Low-cost 60 GHz-band antenna-integrated transmitter/receiver modules utilizing multi-layer low-temperature co-fired ceramic technology," in IEEE ISSCC Dig. Tech. Papers, Feb. 2000, pp. 324-325.
[4.3]Razavi, B., "CMOS transceivers for the 60-GHz band," in IEEE RFIC Symp. Dig., pp. 11-13, Jun. 2006.
[4.4]A. Babakhani, X. Guan, A. Komijani, A. Natarajan, and A. Hajimiri, "A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas," IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2795-2806, Dec. 2006.
[4.5] A. Hajimiri, “mm-Wave ICs in Silicon," ISSCC 2006 tutorial.
[4.6] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, "A 60-GHz down-converting CMOS single-gate mixer," in IEEE RFIC Symp. Dig., pp. 163-166, Jun. 2005.
[4.7]R. Allam et al., "60 GHz MMIC mixer using a dual-gate PM HEMT," in IEEE 1995 URSI Proceedings of the International Symposium on Signals, Systems, and Electronics, San Francisco, CA, Aug 1999, pp. 171-174
[4.8]S. Lin, Y. Qian, and T. Itoh, "A quasi-optical sub-harmonic self-oscillating mixer," 28th European Microwave Conference Proceedings, (vol.1), 6-8 Oct. 1998.
[5.1] C. M. Lo, C. S. Lin, and H. Wang, "A miniature V-band 3-stage cascode LNA in 0.13μm CMOS," in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 1254-1263.
[5.2] Ping-Chen Huang, Ming-Da Tsai, Huei Wang, Chun-Hung Chen, and Chih-Sheng Chang, "A 114GHz VCO in 0.13μm CMOS technology," in IEEE ISSCC Dig. Tech. Papers, Feb. 2005, pp. 404-606.
[5.3] Chinh H. Doan, Sohrab Emami, Ali M. Niknejad, and Robert W. Brodersen, ”Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[5.4] T. S. D. Cheung, and J. R. Long, ” Shielded passive devices for silicon-based monolithic microwave and millimeter-wave integrated circuits”, IEEE J. Solid-State Circuits, Vol. 41, No. 5, pp.1183–1200, May. 2006
[5.5] Abbas Komijani and Ali Hajimiri, ”A wideband 77-GHz, 17.5-dBm fully integrated power amplifier in silicon”, IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1749-1756, Aug. 2006.
[5.6] David M. Pozar, Microwave Engineering, 3rd Edition, John Wiley and Sons, NY, 2005
[5.7] T. Hirota, et al, “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s”, IEEE Trans. Microw. Theory Tech., Vol. 38, No. 3, pp. 270-275, March 1990.
[5.8]T. Yao, M. Gordon, K. Yau, M.T. Yang, and S.P. Voinigescu “60-GHz PA and LNA in 90-nm RF-CMOS,” in IEEE RFIC Symp. Dig., pp. 147-150, Jun. 2006.
[5.9] M.A.T Sanduleanu, “60 GHz Integrated Circuits and Wireless Systems” ESSCIRC Workshop 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top