跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋之維
研究生(外文):Chih-Wei Sung
論文名稱:使用多相位取樣技術之高速連續時間至數位轉換器設計與實作
論文名稱(外文):Design and Implementation of High-speed Continuous Time-to-Digital Converter Using Multiphase Sampling Technique
指導教授:曹恆偉曹恆偉引用關係
指導教授(外文):Hen-Wai Tsao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:124
中文關鍵詞:時間至數位轉換器延遲鎖定迴路多相位產生器邊緣合成器連續轉換
外文關鍵詞:Time-to-Digital Converter (TDC)Delay Locked Loop (DLL)edge combiner
相關次數:
  • 被引用被引用:0
  • 點閱點閱:448
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究之主要目的,在於時間至數位轉換器(Time-to-Digital Converter, TDC),又可以稱為時距數位化電路(Time Digitizer)的研製,其主要的功能係量測單擊信號(Single-Shot)波形脈寬或是起始/停止(Start/Stop)信號之間的時距,前述的單擊信號亦可將其上升以及下降邊緣視為起始與停止信號處理,其他相關同一般類比至數位轉換器(Analog-to-Digital Converter, ADC)的定義。近年來由於延遲鎖定迴路(Delay Locked Loop, DLL)廣泛應用在解決與時間相關的問題上,諸如時脈產生器(Clock Generator)、時脈誤差(Clock Skew)等,兼備穩定度高以及設計容易的特性,提供多相位時脈進行取樣,因此延遲鎖定迴路亦適合應用在時間至數位轉換器電路。
本研究分為兩個部份,第一部份是針對連續時距數位化電路進行研究,文中提出一個兩級內插的架構,可以同時處理連續週期的信號而不必進行任何的重置(Reset),並使用一個相對轉換概念取代傳統在後期加入額外的數位轉換電路,可在一個參考時脈週期的時間內完成轉換,達到高速轉換的特性。在電路的層面,同時提出一個新型的邊緣合成器應用在延遲鎖定迴路倍頻電路(Frequency Multiplier),藉此產生後期電路的高頻參考時脈,故不需要額外的高頻輸入訊號,如此亦可達到一般可攜帶式(Portable)的應用。使用0.18-um CMOS 1P6M製程,在輸入操作頻率為200MHz下,最快輸入連續信號可達400MHz,解析度為78.125ps,僅需要16個延遲單元下達到兩級內插級數為64。晶片測量結果INL介於-0.99~0.98LSB,DNL介於-0.62~0.51LSB,整體晶片面積為1.1 mm x 1.0 mm。
第二部份主要著重於更高的解析度,採用相位內插器(Phase Interpolator)達到高解析度,在操作頻率為400MHz下,僅僅使用了12個延遲單元達到了總共128個內插級數,兼具了前述的所有優點,不失其連續取樣、相對時距轉換特性。使用0.18-um CMOS 1P6M製程來實現,解析度提高了400%至19ps,對於功率消耗的部份更是只需要不到50%的78mW,在線性度的表現上,INL介於-1.19~1.45LSB,DNL介於-0.69~0.79LSB,如此高解析度特性更是未來時距量測系統的主力。
The main purpose of this thesis lies in the design and implementation of a Time-to-Digital Converter (TDC) which is also named as Time Digitizer. It is used to measure the pulse width of a single-shot pulse or the time interval between Start and Stop signals. The former signal, a single-shot pulse, the rising and falling edges can also be treated as the Start and Stop signals, respectively. The main principle and some definitions are similar as an Analog-to-Digital Converter (ADC). In recent years, Delay Locked Loops (DLLs) are widely used in many timing applications, such as clock generator、clock skew, etc. Due to the considerations of design facility and stability, DLLs are generally employed in modern TDC design.
The thesis is divided into two parts. The first part of the research is to realize continuous conversion time digitizer circuitry. Two-level conversion scheme is proposed in this part. Continuous signals propagate and are digitized at the same time without any reset mechanism. The concept of relative timing conversion is in replace of additional digital circuits. The conversion time is within a period of the reference clock to achieve the characteristic of high-speed operation. Mentioned to the circuit field, a novel edge combiner is proposed to multiply the external reference clock to the higher one which is served as the clock of the latter stage circuitry. It does not require any extra input clock for most portable usage. The chip is fabricated in 0.18-um CMOS 1P6M technology. With an input reference clock of 200MHz and a continuous signal of the maximum frequency of 400MHz, the proposed TDC achieves 78.125ps resolution. It simply adopts 16 delay elements to attain the interpolation ratio of 64. From the measurement results, the INL is within -0.99 LSB to 0.98 LSB and DNL is within -0.62 LSB to 0.51LSB. The whole chip roughly occupies the area of 1.1mm2.
The second part of this thesis focuses on higher resolution. It uses a phase interpolator to reach higher resolution. With an input reference clock of 400MHz and a continuous signal of the maximum frequency of 300MHz, the second design adopts only 12 delay elements to achieve the interpolation ratio of 128. It covers all of the above advantages and maintains its features of continuous sampling and relative timing conversion. This design is realized in 0.18-um CMOS 1P6M technology. The resolution increases 400% to 19ps. As to power dissipation, it requires only 50% of the previous work to 78mW. In the performance of linearity, the INL is within -1.19 LSB to 1.45 LSB and DNL is within -0.69 LSB to 0.79LSB. Such a high resolution TDC will be the main character on timing measurement in the future.
中文摘要 I
Abstract III
Contents V
List of Figures IX
List of Tables XIII

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis organization 2

Chapter 2 Conventional Time-to-Digital Converter 3
2.1 Introduction 3
2.2 Time-to-Digital Converter with the technique of counter sampling 3
2.3 Time-to-Voltage Time-to-Digital Converter 6
2.4 Dual slope integration 7
2.5 Vernier Delay Line (VDL) 9
2.6 An array of delay locked loops 13
2.7 Pulse shrinking delay elements 15
2.8 Summary 18

Chapter 3 Fast conversion continuous Time-to-Digital Converter 21
3.1 Introduction 21
3.2 Basic principle of continuous Time-to-Digital Converter 22
3.3 The proposed circuit architecture 27
3.4 Multiphase generator 28
3.4.1 Design considerations of the DLLs 30
3.4.2 Phase Detector (PD) and Phase Frequency Detector (PFD) 36
3.4.3 Charge Pump (CP) 39
3.4.4 Voltage Controlled Delay Line (VCDL) 44
3.4.5 Edge Combiner (EC) 46
3.5 Counter sampler circuits 51
3.5.1 Latch and D Flip-flop 51
3.5.2 Design of a 5-bit up-counting synchronous reference counter 53
3.6 Multiphase sampling circuits 55
3.6.1 Coarse and fine sampler 55
3.6.2 Sampling DFFs array 55
3.6.3 8-to-3 Encoder 57
3.6.4 Digital Error Checker (DEC) 58
3.7 Sampling controller circuits 59
3.7.1 Timing diagram and operation of sampling controller 59
3.7.2 Transition detector 60
3.8 Summary 60

Chapter 4 Simulation analysis and measurement results 63
4.1 Introduction 63
4.2 Multiphase generator 65
4.2.1 Jitter analysis of a DLL-based clock multiplier 65
4.2.2 Phase Detector and Charge Pump 67
4.2.3 VCDL 68
4.2.4 Closed loop simulation of multiphase generator 70
4.3 Timing sampler 71
4.3.1 DFF 71
4.3.2 Counter 72
4.3.3 Coarse and fine sampler 73
4.3.4 Sampling controller 74
4.4 INL/DNL characteristic 74
4.5 Chip layout 76
4.6 Measurement setup and experimental results 78
4.6.1 Print Circuit Board design 79
4.6.2 Measurement setup 81
4.6.3 Experimental results 82
4.7 Summary 87

Chapter 5 High resolution continuous Time-to-Digital Converter 89
5.1 Introduction 89
5.2 Performance improvement 90
5.3 Architecture of high resolution TDC 92
5.4 Circuit design 94
5.4.1 Delay cell 94
5.4.2 Voltage scaling circuit 96
5.4.3 Phase interpolator 99
5.4.4 Hardware cost in the fine sampler 102
5.5 Simulation results 104
5.6 Chip layout 109
5.7 Summary 112

Chapter 6 Conclusions 113
6.1 Conclusions 113
6.2 Future evolution 114

Bibliography 117
[1]D. Santos, S. Dow, J. Flasck, and M. Levi, “A CMOS delay locked loop and sub-nanosecond time-to-digital converter chip”, IEEE Trans. Nucl. Sci., vol. 43, pp. 1717–1719, June 1996.

[2]B.-K. Swann, B.-J. Blalock, L.-G. Clonts, D.-M. Binkley, J.-M. Rochelle, E. Breeding and K.-M. Baldwin, “A 100-ps time-resolution CMOS time-to-digital converter for positron emission tomography imaging applications”, IEEE J. Solid-State Circuits, vol. 39, pp. 1839-1582, Nov. 2004.

[3]J.-P. Jansson, A. Mantyniemi and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision”, IEEE J. Solid-State Circuits, vol. 41, pp. 1286-1296, Mar. 2006.

[4]P.-M. Levine and G.-W. Roberts, “High-resolution flash time-to-digital conversion and calibration for system-on-chip testing”, IEE Proc.-Comp. and Dig. Tech., vol. 152, pp. 415-426, May 2005.

[5]P. Dudek, S. Szczepanski, and J.-V. Hatfield, “A high resolution CMOS time-to-digital converter utilizing a vernier delay line”, IEEE J. Solid-State Circuits, vol. 35, pp. 240–247, Feb. 2000.

[6]C.-T. Gray, W.-T. Liu, W. Noije, T. Hughes and R.-K. Cavin III, “A sampling technique and its CMOS implementation with 1 Gb/s bandwidth and 25 ps resolution”, IEEE J. Solid-State Circuits, vol. 29, pp. 340-349, Mar. 1994.

[7]J. Christiansen, ”An integrated high resolution CMOS timing generator based on an array of delay locked loops”, IEEE J. Solid-State Circuits, vol. 31, pp. 952-957, July 1996.

[8]P. Chen and S.-I. Liu, “A cyclic CMOS time-to-digital converter with deep sub-nanosecond resolution”, in Proc. Custom Integr. Circuits Conf., pp. 605–608, May 1999


[9]K. Maatta, J. Kostamovaara, “A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications”, IEEE Trans. Instrumentation and Measurement, vol. 47, pp. 521 – 536, April 1998.

[10]C.-S. Hwang, P. Chen, and H.-W. Tsao, “A high-precision time-to-digital converter using a two-level conversion scheme”, IEEE Trans. Nuclear Sci., vol. 51, pp. 1349–1352, Aug. 2004.

[11]M. Mota and J. Christiansen, “A high-resolution time interpolator based on a delay locked loop and an RC delay line”, IEEE J. Solid-State Circuits, vol. 34, pp. 1360–1366, Oct. 1999.

[12]E.-R. Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A low power CMOS time-to-digital converter”, in Proc. IEEE Solid-State Circuits Conf., vol. 30, pp. 984–990, Sep. 1995.

[13]A. Mantyniemi, T. Rakhonen, and J. Kostamovaara, “An integrated 9-channel time digitizer with 30-ps resolution”, in Proc. IEEE Solid-State Circuits Conf., pp. 266–267, Feb. 2002.

[14]M. Mota, J. Christiansen, S. Debieux, V. Ryjov, P. Moreira, and A. Marchioro, “A flexible multi-channel high-resolution time-to-digital converter ASIC”, in Nucl. Sci. Symp. Conf., vol.2, pp. 155–159, Oct. 2000.

[15]R. Nutt, “Digital Time intervalometer”, Rev. Sci. Instrum., vol. 39, pp. 1342-1345, 1968.

[16]Sobczynski, C.-W. Haynes, B.-W. Skubic, M.-J., and H.-L. Thielman, “25 ps resolution, 12-bit, 64 channel FASTBUS time-to-digital converter”, IEEE Trans. Nucl. Sci., vol. 36, pp. 426–430, Feb. 1989.

[17]E. Owen, “The elimination of offset errors in dual-slope analog-to-digital converters”, IEEE Trans. Circuit and system, vol. 27, pp. 137–141, Feb. 1980.

[18]A., Mutoh, S. Nitta, “Noise immunity characteristics of integral analog-to-digital converter including voltage-to-frequency converter for noise on power-supply-lines”, Electromagnetic Compatibility, International Symposium , pp.497 – 500 , May 2003.

[19]A.-H Chan, G.-W. Roberts, “A deep sub-micron timing measurement circuit using a single-stage Vernier delay line”, in Proc. Custom Integr. Circuits Conf., pp. 77 – 80, May 2002.

[20]P. Chen, S.-I. Liu , J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement”, IEEE Trans. Circuits and Systems, vol 47, pp. 954 – 958, Sept. 2000.

[21]D.-J. Foley, and M.-P. Flynn, “CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator”, IEEE J. Solid-State Circuits, vol. 36, pp. 417-423, Mar. 2001.

[22]A. Waizman, “A delay line loop for frequency synthesis of de-skewed clock”, IEEE Solid-State Circuits Conf. , pp. 298-299, Feb. 1994.

[23]J.-G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques”, IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996.

[24]S. Kim, K. Lee, Y. Moon, D.-K. Jeong, Y. Choi, and H.-K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL”, IEEE J. Solid-State Circuits, vol. 32, pp. 691-700, May 1997.

[25]W. Rhee, “Design of the high-performance CMOS charge pumps in the phase-locked loops”, Inter. Symposium Circuits and System , vol.2, pp. 545-548, 1999.

[26]F.-M. Gradner, “Charge-pump phase-locked loops”, IEEE Trans. Communications, vol.28, pp.1849-1858, Nov. 1980.

[27]H.-H. Chang, “Design and Implementation of CMOS Digital/Analog Delay-Locked Loops”, Ph.D. Dissertation, NTU, 2004.

[28]R. Farjad-Rad, W. Dally, H.-T. Ng, R.Senthinathan, R. Rathi, M.-J.E. Lee and J. Poulton, “A Low-power Multiplying DLL for Low-jitter Multigigahertz Clock Generation in Highly Integrated Digital Chips”, IEEE J. Solid-State Circuits, vol.37, pp.1804-1812, Dec. 2002.

[29]M. Mota, J. Christiansen, “A four-channel self-calibrating high-resolution time to digital converters”, IEEE Electronics, Circuits and Systems, vol.1, pp. 409-412, 1998.

[30]C.-C. Lin, “The clock generator using MDLL technique”, M.S. Thesis, NTU, Jan. 2007.

[31]C. Kim, I.-C. Hwang, S.-M. Kang, “A low-power small-area +- 7.28-ps-jitter 1-GHz DLL-based clock generator“, IEEE J. Solid-State Circuits, vol.37, pp.1414-1420, Nov. 2002.

[32]R.-L. Aguiar, D.-M. Santos, “Oscillatorless clock multiplication “, IEEE Solid-State Circuits and System, vol.4, pp. 630 – 633, May 2001.

[33]N.-H.-E Weste, D. Harris, CMOS VLSI Design, Third edition, Addison Wesley, 2004.

[34]J. Yuan, and C. Svensson, “High-speed CMOS circuit technique”, IEEE J. Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989.

[35]劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.

[36]D.-A. Johns, and K. Martin, Analog Integrated Circuit Design, Wiley, 1997.

[37]C.-C Hung, “Design of a CMOS Delay-Locked-Loop for clock generator applications”, M.S. Thesis, NTU, 2005.

[38]T.-C. Lee, and K.-J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application”, IEEE J. Solid-State Circuits, vol. 41, pp. 1245-1252, June 2006.

[39]H.-H Chang, J.-W Lin, C.-Y Yang, S.-I Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle”, IEEE J. Solid-State Circuits, Vol. 37, pp.1021-1027, Aug. 2002.

[40]J.-M Chou, Y.-T Hsieh, and J.-T Wu, “Phase Averaging and Interpolation Using Resistor Strings or Resistor Rings for Multi-Phase Clock Generation”, IEEE Trans. Circuits and Systems, vol 53, pp. 984 – 991, May 2006.

[41]L. Ping, Y. Fan and R. Junyan, “A low-jitter frequency synthesizer with dynamic phase interpolation for high-speed Ethernet”, IEEE Solid-State Circuits and System, pp. 2481 – 2484, May 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top