|
References CH2 [1] S. M. Sze and J. C. Irvin, “Resitivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K,” Solid State Electron., vol. 11, pp. 599-602, 1968. [2] M. L. Lee and E. A. Fitzgerald, “Optimized strained Si / strained Ge dual-channel heterostructures for high mobility P- and N-MOSFETs,” IEDM Tech. Dig., pp. 429-432, 2003. [3] H. Shang, J. O. Chu, S. Bedell, E. P. Gusev, P. Jamison, Y. Zhang, J. A. Ott, M. Copel, D. Sadana, K. W. Guarini, and M. Ieong, “Selectively formed high mobility strained Ge PMOSFETs for high performance CMOS,” IEDM Tech. Dig., pp. 157-160, 2004. [4] M.-A. Nicolet and W.-S. Liu, “Oxidation of GeSi,” Microelectronics Eng., vol.28, pp. 185-191, 1995. [5] K. Prabhakaran and T. Ogino, “Oxidation of Ge(100) and Ge(111) surfaces,” Surf. Sci., vol. 325, pp. 263-271, 1995. [6] “Front end processes,” in International Technology Roadmap for Semiconductors 2003 Edition. Austin, TX: Semiconductor Industry Assoc., 2003. [7] Y. Nishi, “Insulated gate field effect transistor and its manufacturing method,” Patent 587 527, 1970. [8] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain,” Proc. IEEE, vol. 56, no. 8, pp. 1400-1402, Aug. 1968. [9] E. Dubois and G. Larrieu, “Measurement of low Schottky barrier heights applied to S/D metal-oxide-semiconductor field effect transistors,” J. Appl. Phys., vol. 96, no. 1, pp. 729-737, Jul. 2004. [10] V. W. L. Chin, J. W. V. Storey, and M. A. Green, “Characteristics of p-type PtSi Schottky diodes under reverse bias,” J. Appl. Phys., vol. 68, pp. 4127-4132, Oct. 1990. [11] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier S/D MOSFET using Ytterbium silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565-567, 2004. [12] M. Jang, Y. Kim, J. Shin, and S. Lee, “Characterization of erbiumsilicided Schottky diode junction,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 354-356, 2005. [13] Chi On Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002. [14] S. Zhu, et al., “Schottky-barrier S/D MOSFETs with high-k gate dielectrics and metal-gate electrode,” IEEE Electron Device Lett., vol. 25, pp. 268-270, 2004. [15] H. Shang, J. O. Chu, X. Wang, P. M. Mooney, K Lee, J. Ott, K. Rim, K. Chan, K. Guarini, M. Ieong, “Channel Design and Mobility Enhancement in Strained Germanium Buried Channel MOSFETs.” P204-205 [16] John M. Larson and John P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Device, vol.53, no.5, pp. 1048-1058, 2006
References CH3 [1] S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-channel Germanium MOSFETs with high channel mobility,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 325-326, 1989. [2] K. Ikeda, Y. Yamashita, N. Sugiyama, “Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation,” Appl. Phys. Lett., vol. 88, 152115, 2006. [3] J. Y. Spann, R. A. Anderson, T. J. Thornton, G. Harris, S. G. Thomas, and C. Tracy, “Characteristic of Nickel Germanide Thin Films for Use as Contacts to p-channel Germanium MOSFETs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 151-153, 2005. [4] H. Shang, H. Okorn-Schimdt, J. Ott, P. Kozolowski, S. Steen, E. C. Jones, H. S. P. Wong, and W. Hanesch, “Electrical characterization of germanium p-channel MOSFETs,” IEEE Electron Device Lett., vol. 24, no.3, pp. 242-244, 2003. [5] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002. [6] D. S. Yu, C. H. Huang, M.F. Li, B. J. Cho, and D. L. Kwong, “Al2O3 –Ge-On-Insulator n- and p- MOSFETs With Fully NiSi and NiGe dual Gates,” IEEE Electron Device Lett., vol. 25, no.3, pp. 138-140, 2004. [7] A. Ritenour, S. Yu, M. L. Lee, N. Lu, W. Bai, A. Pitera, E. A. Fitzgerald, D. L. Kwong, and D. A. Antoniadis, “Epitaxial Strained Germanium p-MOSFETs with HfO2 Gate Dielectric and TaN Gate Electrode,” IEDM Tech. Dig., pp. 433-436, 2003. [8] S. Zhu, R. Li, S. J. Lee, M. F. Li, A. Du, J. Singh, C. Zhu, A. Chin, and D. L Kwong, “Germanium pMOSFETs With Schottky-Barrier Germanide S/D, High-k Gate Dielectric and Metsl Gate,” IEEE Electron Device Lett., vol. 26, no.2, pp. 81-83, 2005. [9] D. Z. Chi, R. T. P. Lee, S. J. Chua, S. J. Lee, S. Ashok, and D. L. Kwong, “Current-voltage characteristics of Schottky barriers with barrier heights larger than the semiconductor band gap : The case of NiGe/ n-(001) Ge contact,” J. of Appl. Phys. Lett., vol. 97, 113706, 2005 [10] T. Deegan et al., Applied Surface Science 123/124, 66 (1998) [11] JCPDS diffraction file 07-0297 (NiGe). [12] S. Zhu, A. Nakajima, Y. Yokoyama, and K. Ohkura, “Temperature Deoendence of Ni-Germanide Formed by Ni-Ge Solid-State Reaction” 5th International Workshop on Junction Technology, 2005. [13] T. Jarmar, “High-Resolution Studies of Silicide-films for Nano IC-Component,” Acta Universitatis Upsaliensis, 2005. [14] S. L. Zhang, M. Ostling, “Metal Silicides in CMOS Technology: Past, Present and Future Trends,” Critical Reviews in Solid State and Materials Sciences, 28, 1, 2003. [15] F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, and J. L. Labar, “Simultaneous growth of Ni5Ge3 and NiGe by reaction of Ni film with Ge,” Appl. Phys. Lett., vol. 89, 131920, 2006. [16] R. T. P. Lee, D. Z. Chi, M.Y. Lai, N. L. Yakovlev, and S. J. Chua, “Effects of Incorporation in Ni on Silicidation Reaction and Structural/Electrical Properties of NiSi,” Electrochem. Soc. 151, G642,2004. [17] S. Gaudet, C. Lavoie, C. Detavernier, and P. Desjardins, “Germanide phase formation and texture,” 3rd International SiGe Technology and Device Meeting (ISTDM), New Jersey, May 15-17, pp. 22. 2006. [18] J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetics of Ni/a-Ge bilayer reactions,” Thin Solid Films, Vol. 253, pp.456-461, 1994.
References CH4 [1] “ Front end processes,” in International Technology Roadmap for Semiconductor 2003 Edition. Austin, TX: Semiconductor Industry Assoc., 2003. [2] M. Rodder, “45nm CMOS: Device architecture and roadmap,” in IEDM Tech. Dig. Tutorial, 2004, pp. 1-61. [3] C. W. Liu, S. Maikap, and C.-Y. Yu, IEEE Circuits and Devices Magazine, May/June, pp. 21-36, 2005. [4] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F.Gibbons, “Comparative study of phononlimited mobility of two-dimensional electrons in strained and unstrained-Si metal-oxide-semiconductor field-effect transistors,” Journal of Applied Physics. vol. 80, pp. 1567-1577, 1996. [5] S. Thompson et al., “ A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 mm 2 SRAM cell,” in IEDM Tech. Dig., 2002, pp.61-64. [6] S. E. Thompson et al., “ A logic nanotechnology featuring strained silicon,” IEEE Electron Device Lett., vol. 25, pp. 191-193, Apr. 2004. [7] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs,” in IEDM Tech. Dig., 2003, pp. 49-52. [8] S. Maikap, M. H. Liao, F. Yuan, M. H. Lee, C.-F. Huang, S. T. Chang, and C. W. Liu, Tech. Dig. – Int. Electron Devices Meet. 233 (2004). [9] M. H. Liao, S. T. Chang, M. H. Lee, S. Maikap, and C. W. Liu, Journal of Applied Physics. vol. 98, pp. 066104-066106, 2005. [10] Y. Hida, T. Tamagawa, H. Ueba, and C. Tatsuyama, Journal of Applied Physics. vol. 67, pp. 7274-7277, 1990. [11] EMIS Datareviews Series No. 20, Properties of Crystalline Silicon, edited by R. Hull (1999). [12] W. Zhang and J. G. Fossum, “On the threshold voltage of strained-Si–Si1-xGex MOSFETs,” IEEE Trans. Electron Devices, vol. 52, no.2, pp. 263-268, 2005. [13] J-S Lim, S. E. Thompson, J. G. Fossum, “Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 731-733, 2004. [14] M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained-Si, Ge, and SiGe alloys,” Journal of Applied Physics., vol. 80, pp. 2234-2252, 1996. [15] Mehmet C. Ozturk, “Short course- channel, source/drain and contact engineering for 45nm,” in IEDM, 2004. [16] C. Herring and E. Vogt, “Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering,” Phys. Rev., vol. 101, pp. 944-961, 1956. [17] I. Balslev, “Influence of uniaxial stress on the indirect absorption edge in silicon and germanium,” Phys. Rev., vol. 143, pp. 636-647, 1966. [18] C. G. VandeWalle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, Condens. Matter, vol. 34, pp. 5621-5634, 1986. [19] H. Miyata, T. Yamada, and D. K. Ferry, “Electron transport properties of a strained-Si layer on a relaxed Si1-xGex substrate by Monte Carlo simulation,” Appl. Phys. Lett., vol. 62, pp. 266-2663, 1993. [20] K. Rim, J.Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs,” in IEDM Tech. Dig., pp. 517-520, 1995. [21] M. H. Liao, P.-S. Kuo, S.-R. Jan, S. T. Chang, and C. W. Liu,” Strained Pt Schottky diodes on n-type Si and Ge,” Appl. Phys. Lett. 88, 143509 (2006). [22] Ashcroft and Mermin, Solid state physics, pp. 32-38. (Harcourt, 1975).
|