跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江彥德
研究生(外文):Yen-Te Chiang
論文名稱:絕緣層上鍺晶圓製程及其特性
論文名稱(外文):Fabrication and Characterization of Ge-on-Insulator
指導教授:劉致為
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:85
中文關鍵詞:晶圓鍵結絕緣層上覆鍺光偵測器康寧玻璃銦錫氧化物聚醯亞鞍膜
外文關鍵詞:wafer bondingGOIphotodetectorCorning glassITOpolyimide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們經由晶圓鍵結結合氫離子佈植技術,成功地將鍺薄膜層轉移至一有50奈米二氧化矽覆蓋的矽晶圓上,並且做出絕緣層上鍺之結構。因為鍺擁有高的載子遷移率且具有吸收紅外光的能力,使其成為在高速光偵測器應用上的最佳選擇。為了減少鍺層的表面粗糙度進而降低暗電流,第二階段的氣氛退火(10%氫氣與90%的氮氣)為可行的方法之一。
因為玻璃基板可以達到降低成本的目標且可使用於背面入射的應用上,所以玻璃基板是一個好的代替品來取代覆蓋二氧化矽的矽晶圓。當蝕刻鍺層的表面時,我們可以得到較低的暗電流並且提升可見光下的光響應。若在玻璃上覆鍺的結構上做選擇性的蝕刻,便可達到在同一晶片上在未蝕刻的部分來偵測紅外光而蝕刻的部分偵測可見光的好處。此外,當歐姆接觸從鋁轉換成銦錫氧化物,則此結構便可運用在太陽能電池的技術發展上。
再來,塑膠膜亦可以結合晶圓鍵結與氫離子佈植技術達成鍺薄膜轉移,製造出塑膠膜上覆鍺之結構,並且做出塑膠膜上覆鍺-金氧半-光偵測器。可撓性電子元件將具有相當的潛力於應用在可攜式與可捲曲式的顯示器,感測器/促動器,生醫元件與射頻識別晶片…等的運用上。
In this thesis, the thin film germanium layer is transferred successfully to another silicon wafer capped with about 50 nm SiO2 by direct wafer bonding and hydrogen-induced layer transfer and formed the germanium-on-insulator (GOI) structure. The high mobility of germanium and the ability of germanium to absorb in the infrared make it a promising candidate in high-speed photodetector application. To reduce the surface roughness of germanium layer for decreasing the dark current, the second annealing in forming gas (i.e. H2 10%) is one of the workable methods.
Because the glass substrate can reach the goal of low cost and could be used for back incident application, the glass substrate is a good substitute for silicon wafer capped with SiO2. Etching the surface of germanium layer could decrease the dark current and increase the responsivity under the visible light exposure. The selectively etching on germanium-on-glass (GOG) structure can achieve visible light and infrared detection on the same chip with the unetched part for infrared detection and the etched part for visible light detection. Furthermore, the ohmic contact is exchanged from aluminum to indium-tin-oxide (ITO) to apply on the GOG substrate for back incident application. This germanium-on-ITO glass structure could be used for solar cell technology.
Afterward the polyimide substrate is combined with the techniques direct wafer bonding and hydrogen-induced layer transfer to fabricate the germanium-on- polyimide (GOP) structure and GOP MOS photodetector for the potential application in flexible electronics. That is feasible for its applications in portable and roll-able display, sensors/actuators, medical devices and RF identification.
List of Figures Ⅴ
List of Tables Ⅸ
Chapter 1 Introduction
1.1 Background and Motivation 1
1.2 Organization 3
References 5

Chapter 2 Ge-on-Insulator Substrates Fabrication, Characterization and MOS Detectors
2.1 Introduction 6
2.2 Ge-on-Insulator Photodetectors 7
2.2.1 Low Temperature Wafer bonding 7
2.2.2 Liquid Phase Deposition 12
2.2.3 Current Reduction by Metal Gate 14
2.2.4 Device Fabrication and Performance 16
2.3 High Speed Ge-on-Insulator Detectors 23
2.3.1 Device Fabrication 24
2.3.2 Results and Discussions 26
2.3.3 Improvement and Future Work 28
2.4 Forming Gas Anneal 30
2.4.1 Surface Roughness 30
2.5 Conclusion 34
References 35

Chapter 3 Ge-on-Glass Fabrication and MOS Detectors
3.1 Introduction 37
3.2 Experiment Process 38
3.2.1 Low Temperature Wafer Bonding 38
3.2.2 Surface Roughness 41
3.2.3 Surface Etching 46
3.2.4 Device Layer Structure 49
3.3 Ge-on-Glass MOS Detectors 51
3.3.1 Device Fabrication 51
3.3.2 Results and Discussions 53
3.4 Thin film Ge Layer on Indium-Tin-Oxide 63
3.4.1 Background 63
3.4.2 Device Fabrication 64
3.4.3 Results and Discussions 65
3.5 Conclusion 68
References 69

Chapter 4 Ge-on-Polyimide Substrates Fabrication and MOS Detectors
4.1 Introduction 70
4.2 Ge-on-Polyimide MOS Detectors 71
4.2.1 Background 71
4.2.2 Device Fabrication and Experimental Details 72
4.2.3 Results and Discussions 75
4.3 Conclusion 81
References 82

Chapter 5 Summary and Future Work
5.1 Summary 84
5.2 Future Work 85
Chapter 1
[1] 2006 International Technology Roadmap for Semiconductors (ITRS).
[2] C. Chui, H. Kim, D. Chi, B. Triplett, P. McIntyre, K. and Saraswat, IEEE Proc. Int. Electron Device Meet. (IEDM), 2002, p. 437.
[3] R. King, D. Law, C. Fetzer, R. Sherif, K. Edmondson, S. Kurtz, G. Kinsey, H. Cotal, D. Hurt, J. Ermer, and N. Karam, 20th European Photovoltaic Solar Energy Conf., Barcelona, Spain, 2005, p. 118.
[4] G. Masini, V. Cencelli, L. Colace, F. De Notaristefani, and G. Assanto, Appl. Phys. Lett., 2002, 80, (18), p. 3268.
[5] M. Bruel, Electron. Lett., 1995, 31, p. 1201.
[6] Umicore, Watertorenstraat 33, B-2250 Olen, Belgium.
[7] F. Letertre, C. Deguet, B. Faure, C. Richtarch, J.M. Hartmann, F. Chieu, A. Beaumont, F. Allibert, C. Morales, J.Dechamp, P. Perreau, S. Pocas, S. Personnic, C. Lagahe-Blanchard, B. Ghyselen, Y.M. Le Vaillant, E. Jalaguier, N. Kernevez, C. and Mazure, Mater. Res. Soc. Proc., 2004, 809, (B4.4), p. 153.
[8] C. Deguet, Electrochem. Soc. Proc., 2005, 2005-06, p. 78.

Chapter 2
[1] C. L. Schow, R. Li, J. D. Schaub, and J. C. Campbell, IEEE J. Quantum Electron. 35, 1478 (1999).
[2] Sebastian M. Csutak, Jeremy D. Schaub, Wei E. Wu, Rob Shimer, and Joe C. Campbell, IEEE J. Quantum Electron. 38, 193 (2002).
[3] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, IEEE Photon. Technol. Lett. 16, 2547 (2004).
[4] B.-C. Hsu, S. T. Chang, T.-C. Chen, P.-S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, IEEE Electron Device Lett., vol. 24, no. 5, pp. 318-320, May 2003.
[5] B.-C. Hsu, W.-C. Hua, C.-R. Shie, C.-C. Lai, K.-F. Chen and C. W. Liu, in Proc. Meeting of Electrochemical Society, Philadelphia, PA, 2002, p. 662.
[6] Q.-Y. Tong, et al., Appl. Phys. Lett., Vol. 70,1390 (1997).
[7] Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding (Wiley, New York, 1999).
[8] Frank Fournel, Hubert Moriceau, Bernard Aspar, Karine Rousseau, Joel Eymery, Jean-Luc Rouviere, and Noel Magnea, Appl. Phys. Lett., vol. 80, no. 5, pp. 793-795, Feb. 2002.
[9] Stephen W. Bedell, and William A. Lanford, J. Appl. Phys., vol. 90, no. 3, pp. 1138-1146, Aug. 2001.
[10] Daniel Lasaosa, Jin-Wei Shi, Donato Pasquariello, Kian-Giap Gan, Ming-Chun Tien, Hsu-Hao Chang, Shi-Wei Chu, Chi-Kuang Sun, Yi-Jen Chiu, and John E. Bowers, IEEE J. Select. topics in quantum electron., vol.10, no. 4, pp. 728-741, Jul. 2004.
[11] W. Kern and D. A. Puotinen, RCA Rev., 31, 186 (1970).
[12] M. H. Liao, C.-Y. Yu, C.-F. Huang, C.-H. Lin, C.-J. Lee, M.-H. Yu, S. T. Chang, C.-Y. Liang, C.-Y. Lee, T.-H. Guo, C.-C. Chang, and C. W. Liu, in IEDM Tech. Dig., 2005, pp. 1023-1026.
[13] F. Sugimoto, and Y. Arimoto, Proceedings of 1992 International Symposium on Power Semiconductor Devices & ICs, Tokyo, pp. 240-241.
[14] Qin-Yi Tong, Giho Cha, Roman Gafiteanu, and Ulrich Gösele, Journal of Microelectromechanical Systems, Vol. 3, No. 1, 1994.
[15] H. Nagayama, H. Honda, and H. Kawahara, J. Electrochem. Soc., 135, 2013 (1988).
[16] T. Goda, H. Nagayama, A. Hishinuma, and H. Kawahara, Mater. Res. Symp. Proc., 105, 283 (1988).
[17] T. Homma, T. Katoh, Y. Yamada, J. Shimizu, and Y. Murao, IEEE Symposium on VLSI Technology, 3(1990).
[18] A. Hishinuma, T. Goda, and M. Kitaoka, Appl. Surface Science, 49, 405 (1991).
[19] S. Yoshitomi, S. Tomioka, and N. Haneji, ISDRS., p. 22, 1992.
[20] C. –F. Yeh, C. –L. Chen, and G. –H. Lin, J. Electrochem. Soc., 141, 3177 (1994).
[21] G. Dehlinger, et al., IEEE Photon. Technol. Lett., vol. 16, 2547(2004)
[22] A. Nayfeh, et al., Appl. Phys. Lett., Vol. 85, 2815(2004)
[23] B.-C. Hsu, et al., IEEE Electron Dev. Lett., Vol. 24, 318(2003)
[24] Dehlinger, G.; Schaub, J.D.; Koester, S.J.; Ouyang, Q.C.; Chu, J.O.; Grill, A.; Lasers and Electro-Optics Society, 2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 22-28 Oct. 2005 Page(s):321 - 322

Chapter 3
[1] O. I. Dosunmu et al., IEEE J. Select. Topics Quantum Electron. 10, 694 (2004).
[2] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, IEEE Photon. Technol. Lett. 16, 2547 (2004).
[3] M. Rouviere, L. Vivien, X. Le Roux, J. Mangeney, P. Crozat, C. Hoarau, E. Cassan, D. Pascal, S. Laval, J.-M. Fedeli, J.-F. Damlencourt, J. M. Hartmann, and S. Kolev, Appl. Phys. Lett., 87, 231109 (2005).
[4] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett., 72, 3175 (1998).
[5] M. Oehme, J. Werner, E. Kasper, M. Jutzi and M. Berroth, Appl. Phys. Lett., 89, 071117 (2006).
[6] Frank Fournel, Hubert Moriceau, Bernard Aspar, Karine Rousseau, Joel Eymery, Jean-Luc Rouviere, and Noel Magnea, Appl. Phys. Lett. 80, 793 (2002).
[7] Stephen W. Bedell, and William A. Lanford, J. Appl. Phys. 90, 1138 (2001).
[8] C.-H. Lin, C.-Y. Yu, P.-S. Kuo, C.-C. Chang, T.-H. Guo, and C. W. Liu, Thin Solid Films 508, 389 (2006).
[9] Chang Ok Kima, Sun-Young Hong b, Minju Kim a, Su-Moon Park a, Joon Won Park, J. Colloid Interface Sci. 277 (2004) 499–504.
[10] H. Kobayashi, Y. Kogetsu, T. Ishida and Y. Nakato, J. Appl. Phys. 74 (7). 1993.
[11] H. Kim, C. M. Gilmore A. Pique´ , J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, J. Appl. Phys., Vol. 86, No. 11, (1999).
[12] By Yu Yang, Qinglan Huang, Andrew W. Metz, Jun Ni, Shu Jin, Tobin J. Marks, Antonio DiVenere, and Seng-Tiong Ho, Adv. Mater. 2004, 16, No. 4.

Chapter 4
[1] T. Someya, T. Sakurai, and T. Sekitani, in IEDM Tech. Dig., 2005, pp. 455–458.
[2] S. E. Molesa, A. de la Fuente Vornbrock, P. C. Chang, and V. Subramanian, in IEDM Tech. Dig., 2005, pp. 117–120.
[3] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. E. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Nat. Acad. Sci. USA, vol. 98, no. 9, pp. 4835–4840, Apr. 2001.
[4] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).
[5] G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, and D. M. de Leeuw, Nat. Mater. 3, 106 (2004).
[6] Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, Nature (London) 423, 136 (2003).
[7] T. K. Chuang, A. J. Roudbari, M. Trocolli, Y. L. Chang, G. Reed, M. Hatalis, J. Spirko, K. Klier, S. Preis, R. Pearson, H. Najafov, I. Biaggio, T. Afentakis, A. Voutsas, E. Forsythe, J. Shi, and S. Blomquist, Proc. SPIE 5801, 234 (2005).
[8] A. Tilke, M. Rotter, R. H. Blick, H. Lorenz, and J. P. Kotthaus, Appl. Phys. Lett. 77, 558 (2000).
[9] E. Menard, K. J. Lee, D.-Y. Khang, R. G. Nuzzo, and J. A. Rogers, Appl. Phys. Lett. 84, 5398 (2004).
[10] E. Menard, R. G. Nuzzo, and J. A. Rogers, Appl. Phys. Lett. 86, 093507 (2005).
[11] Y. Sun, S. Kim, I. Adesida, and J. A. Rogers, Appl. Phys. Lett. 87, 083501 (2005).
[12] Z.-T. Zhu, E. Menard, K. Hurley, R. G. Nuzzo, and J. A. Rogers, Appl. Phys. Lett. 86, 133507 (2005).
[13] G. M. Cohen, P. M. Mooney, V. K. Paruchuri, and H. J. Hovel, Appl. Phys. Lett. 86, 251902 (2005).
[14] Hao-Chih Yuan and Zhenqiang Ma, Appl. Phys. Lett. 89, 212105 (2006).
[15] P.K. Shetty, N.D. Theodore, J. Renc, J. Menendez, H.C. Kim, E. Misra, J.W. Mayer, T.L. Alford, Materials Letters 59 (2005) 872–875.
[16] W. H. Teh, Member, IEEE, Guo Lihui, R. Kumar, and D.-L. Kwong, IEEE Trans. Electron Devices, VOL. 26, NO. 11, NOVEMBER 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top