跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/09 10:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:童奕澄
研究生(外文):I-Chen Tung
論文名稱:矽奈米線定向成長機制之研究
論文名稱(外文):The Mechanisms of Electric-Field-Directed Growth of Silicon Nanowires
指導教授:李嗣涔李嗣涔引用關係
指導教授(外文):Si-Chen Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:87
中文關鍵詞:矽奈米線奈米線
外文關鍵詞:silicon nanowirenanowiresiliconSiNWNW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用化學氣相沈積法經由VLS成長機制來成長電場導向及自組裝之未摻雜的矽奈米線。並觀察到矽奈米線會受到外加於相鄰電極的局部電場影響,而呈現岀較有條理的導向成長結果。由電場模擬可以合理解釋兩種電極結構所造成矽奈米線之不同的生長結果。最後,我們成功利用電場導向成長製備矽奈米線,並可直接量測矽奈米線之電流電壓特性。
Electric-field-directed growth and self-assembly of undoped silicon nanowires by chemical-vapor deposition via the vapor-liquid-solid (VLS) growth mechanism in a low pressure chemical vapor deposition (LPCVD) system is demonstrated. The nanowires are seen to respond to the presence of a localized DC electric field set up between adjacent electrode structures. It leads to improve silicon nanowires alignment and organization while transcending a trench. Simulation of the electric field distribution under two different electrode structures can reasonably explain the different growth results. Finally, the electric-field-directed growth of the undoped silicon nanowires was achieved successfully. The results of the in-situ electrical measurement of as-grown silicon nanowires are also presented.
Chapter 1 Introduction....................................1
Chapter 2 Experimental....................................5
2.1 Deposition system.....................................5
2.1.1 Low pressure chemical vapor deposition (LPCVD)......5
2.1.2 Plasma Enhanced Chemical Vapor Deposition (PECVD)...5
2.2 Preparation..........................................11
2.3 Deposition Procedures................................13
2.4 Measurement Techniques...............................14
2.4.1 Current – Voltage characteristics.................14
2.4.2 Thickness Measurement of buffer SiO2...............14
2.4.3 Thickness Measurement of Metal electrodes..........14
2.4.4 Characterization of Silicon Nanowires..............14
Chapter 3 The Electric-Field-Directed Growth of Silicon Nanowires................................................15
3.1 Vapor-Liquid-Solid (VLS) Mechanism...................17
3.1.1 VLS- assisted silicon nanowire growth..............17
3.1.2 The role of the metal catalyst.....................22
3.2 Electric-Field-Directed Growth of Silicon Nanowires..23
3.3 Sample Preparation...................................27
3-4 Results and Discussion...............................39
3.4.1 The growth of undoped SiNWs aligned by the electric field on the structure A-1...............................39
3.4.2 The growth of undoped SiNWs aligned by the electric field on the structure A-2...............................48
3.4.3 The growth of undoped SiNWs aligned by the electric field on the structure B.................................56
Chapter4 Direct Electrical Measurement of the as-grown Silicon Nanowires........66
4.1 The electrical measurement of silicon nanowires......66
4.2 Results and discussion...............................68
4.2.1 The direct electrical measurement of as-grown silicon nanowires on the structure A-2...................68
4.2.2 The direct electrical measurement of as-grown silicon nanowires on the structure B.....................72
Chapter 5 Conclusions....................................74
Reference................................................76
Appendix A 2D Finite Difference Method...................81
[1] S. Tans, A. Verschueren, C. Dekker, Nature (London) 393, 49 (1998)
[2] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)
[3] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002)
[4] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Nano Lett. 1, 453 (2001)
[5] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, Nano Lett. 2, 869 (2002)
[6] D. Appell, Nature (London) 419, 553 (2002)
[7] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003)
[8] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 73, 3396 (1998)
[9] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 75, 1842 (1999)
[10] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471(2000)
[11] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2000)
[12] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science 294,1313 (2001)
[13] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3, 149 (2003)
[14] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002)
[15] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (2001)
[16] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999)
[17] S. Chung, J. Yu, J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000)
[18] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003)
[19] D. Appell, Nature (London) 419, 553 (2002)
[20] K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, S. W. Novak, Appl. Phys. Lett. 85, 3101 (2004)
[21] C. Y. Meng, B. L. Shih, S. C. Lee, J. Nanopart. Res. 7, 615 (2005)
[22] Y. Wang, K. Lew, T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, T. S. Mayer, Nano Lett. 5, 2139 (2005)
[23] Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000)
[24] G. Zheng, W. Lu, S. Jin, C. M. Lieber, Adv. Mater. 16, 1890 (2004)
[25] Y. Cui and C. M. Lieber, Science 291, 851 (2001)
[26] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci.
Technol. B 15, 554 (1997)
[27] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
[28] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
[29] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003)
[30] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 71 (2000)
[31] R. S. Wagner ,W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[32] Givargizov E. I., J. Chem. Physm. 31,20 (1975)
[33] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)
[34] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci.
Technol. B 15, 554 (1997)
[35] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
[36] T. I. Kamins, R. S. Williams, Y. Chen, Y. L. Chang, and Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000)
[37] M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. C. Dickey, Appl.
Phys. Lett. 79, 1546 (2001)
[38] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 291, 630 (2001)
[39] A. Ural, Y. Li, H. Dai, Appl. Phys. Lett. 81, 3464 (2002)
[40] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)
[41] E., Joselevich, C. M. Lieber, Nano Lett. 2, 1137 (2002)
[42] L. Benedict, S. G. Louie, M. L. C|ohen, Phys. Rev. B 52, 8541 (1995)
[43] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, T. E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)
[44] D. L. Fan, F. Q. Zhu, R. C. Cammarata, C. L. Chien, Appl. Phys. Lett. 85, 4175 (2004)
[45] J. Y. Chung, K. H. Lee, J. H. Lee, R. S. Ruoff, Langmuir 20, 3011 (2004)
[46] Z. Chen, W. C. Hu, J. Guo, K. Saito, J. Vac. Sci. Technol. B 22, 776 (2004)
[47] K. Peng, Z. Huang, J. Zhu, Advanced Materials 16, 73 (2004)
[48] K. Jae-Ryoung, H. Oh, H. M. So, J. J. Kim , J. Kim, C. J. Lee, S. C. Lyu, Nanotechnology, 13, 701 (2002)
[49] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Yi, P. Chen, M. Meyyappan, Nano Lett. 4, 1247 (2004)
[50] O. Englander, D. Christensen, J. Kim, L. Lin, and S. J. S. Morris, Nano letters 5, 705 (2005)
[51] L. J. Lauhon, M. S. Gudiksen, D. Wang and C. M. Lieber, Nature 420, 57 (2002)
[52] X. Zhao, C. M.Wei, L. Yang, and M.Y. Chou1, Phys. Rev. Lett. 92, 236805 (2004)
[53] J. S. Hwang, D. Ahn, S. H. Hong, H. K. Kim, S. W. Hwang, B. H. Jeon, and J. H. Choi, Appl. Phys. Lett. 85, 1636 (2004)
[54] N. I. Kovtyukhova, B. K. Kelley, and T. E. Mallouk, J. Am. Chem. Soc., 126, 12738 (2004)
[55] S. F. Hu, Y. C. Wu, C. L. Sung, C. Y. Chang, and T. Y. Huang, Trans. on Nanotechnology, 3, 93 (2004)
[56] J. Chen, S. Klaumünzer, M. C. Lux-Steiner and R. Könenkampa, Appl. Phys. Lett., 85, 1401 (2004)
[57] H. Namatsu, S. Horiguchi, M. Nagase, and K. Kurihara, J. Vac. Sci. Technol. B, 15, 1688 (1997)
[58] S. W. Chung, J. Y. Yu, J. R. Heath, Appl. Phys. Lett., 76, 2068 (2000)
[59] J. L. Chen, S. C. Lee, unpoplished results (2005)
[60] A. Thom and C. J. Apelt, Field Computations in Engineering and Physics. Lomdon: D. Van Nostrand, 1961, p. v.
[61] Matthew N.O. Sadiku, Numerical techniques in electromagnetics, Boca Raton, Fla.: CRC Press, c1992
[62] Pei-bai Zhou, Numerical analysis of electromagnetic fields, Berlin; New York: Springer-Verlag, c1993
[63] Nannapaneni Narayana Rao, Elements of engineering electromagnetics 5th ed, Upper Saddle River, N.J.: Prentice Hall, c2000
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top