跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王科堯
研究生(外文):Ke-Yao Wang
論文名稱:應變矽/矽鍺量子井之磁光效應研究
論文名稱(外文):Magneto-Photoluminescence study of strained Si/SiGe multi-quantum wells
指導教授:鄭鴻祥鄭鴻祥引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:44
中文關鍵詞:磁光矽鍺異質接面
外文關鍵詞:Magneto-luminescenceSiGe heterostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,應變矽/矽鍺異質接面在高速元件及光電元件中已經有了重要的應用。然而,對於有些基本的材料特性還不是很清楚,像是應變所帶來的複雜能帶結構改變,使得定義能帶接面變的相當困難。在光電元件應用上,因為不同的震盪耦合,第一型或第二型能帶接面對元件光電效率有相當大的影響。在本篇論文中,我們對不同應變分佈下的應變矽/矽鍺多量子井結構做了磁光實驗,在磁場下,量子井的光學訊號開始移動。從磁場下的能量移動,兩種形式的激子都被觀察到。我們也做了磁場下迴旋能及黎曼效應的理論模擬,發現與實驗結果相當一致。所以我們認為,只要能夠適當的調整應變分布及鍺含量,我們可以製造出第一型異質接面,進而擁有更好的光電特性。
Strained Si/SiGe heterostructure has attracted great attention recently for its application in high speed and optoelectronic devises. However, the basic parameters such as band alignment are still not so clear due to the complexity of the band shifting and splitting as a result of strain effect between Si/SiGe lattice mismatch. For optoelectronic applications, band alignment (type-I and type-II) with different oscillation strength can cause extreme different optical transition efficiency. In this thesis, magneto-luminescence measurement was performed for Si/SiGe multi-quantum wells with different strain distribution. Under magnetic fields, the transitions associated with quantum well begin to shift. From the behavior of energy shifting, two kinds of excitons (type-I and type-II) are observed. Theoretical modeling of the diamagnetic shifting both considering cyclotron energy and Zeeman effect was performed, and the agreement between observation and calculation is quite well. With a proper strain manipulation, it is possible to form type-I band alignment which in principle has larger oscillation strength for more efficient light emission than the type-II alignment.
Abstract …………………………………………………… II
1 Introduction
1.1 Scope …………………………………………..……...… 1
1.2 Bulk Band Structure …………………………..…..…..… 3
1.3 Strain Effect ……………………………………..….…… 6
1.4 Excitons ………………………………….……....……… 9
1.5 Magnetic Fields ………………………….…..…..………11
1.6 Sample Preparation (Molecular Beam Epitaxy) …...……13
1.7 X-ray diffraction determination of the composition and strain state of SiGe virtual substrates ………………..………15
1.8 References ……………………………….………………16
2 Experimental method and Theory
2.1 Photoluminescence (PL) …………………..…...…………18
2.2 Magneto-Optical spectroscopy ……..……..………………19
2.3 Experimental Setup ……………………..…...……………21
2.4 Theory …………………………………...………………22
2.5 Reference ……………………...…………………………26
3 Results and Analysis
3.1 Sample characterizations …..…….………………………27
3.2 Band alignment ……….…………………………………30
3.3 Photoluminescence ………………………………………34
3.4 Magneto-luminescence …………..…...…………………37
3.5 Discussions ………………………………………………43
3.6 Conclusions and Future works ………………..…………44
3.7 References ……………………………...……..…………44
Chap 1
[1] Richard A. Soref, Proc. Of the IEEE, 81, 1687 (1993)
[2] H. H. Cheng, S. T. Yen, and R. J. Nicholas, Phys. Rev. B 62, 4638 (2000).
[3] C. Penn, F. Schaffler, and G. Bauer, Phys. Rev. B 59, 13314 (1999).
[4] M. L. W. Thewalt, D. A. Harrison, C. F. Reinhart, and J. A. Wolk, Phys. Rev. Lett. 79, 269 (1997).
[5] D. C Houghton, G.. C. Aers, S. R. Eric Yang, E. Wang, and N. L. Rowell, Phys. Rev. Lett. 75, 866 (1995).
[6] C. Penn, F. Schaffler, and G. Bauer, Phys. Rev. B 61, 13055 (2000).
[7] J. M. Hartmann, Semicond. Sci. Technol. 15, 370 (2000).
[8] Chris G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
[9] P. Boucaud, and M. El Kurdi, Appl. Phys. Lett. 85, 46 (2004).
[10] S. R. Sheng, N. L. Rowell, and S. P. McAlister, Appl. Phys. Lett. 83, 857 (2003).
[11] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
[12] Jasprit Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge, New York (2003)
[13] G. E Pikus and G. L. Bir, Sov. Phys.-Solid State 1, 1502 (1960)
[14] G. E Pikus and G. L. Bir, Symmetry and Strain-induced Effects in Semiconductors, Wiley, New York (1974)
[15] E.O. Kane, Semiconductors and Semimetals, R.K Willardson and A.C. Beer, Academic Press, 1, 75 (1996).
[16] M.H. Weiler, Semiconductors and Semimetals, R.K Willardson and A.C. Beer, Academic Press, 16, 119 (1996).
[17] J.W. Matthews and A. E. Blakeslee, J. Crystal Growth 27 118 (1974)
[18] Bolhovityanov YB, Pchelyakov OP, Sokolov LV, et al IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA 65, (2) 180 (2001)
[19] E.P O’Reilly, Semicond. Sci. Technol., 4, 121 (1989).
[20] Schaffler F, Semicond. Sci. Technol. 12 (12): 1515 (1997)
[21] H. H. Cheng, Ph. D Thesis, Oxford (1996)
[22] Wang P. J. et al, Appl. Phys. Lett., 59 814 (1991)

Chap 2
[1] H. H. Cheng, Ph. D Thesis, Oxford (1996)
[2] R. L. Greene and K. K. Bajaj, Phys. Rev. B 31, 6498 (1985)
[3] M. Bugajski, W. Kuszko and K. Rogiuski, Solid. State. Commun, 60 669 (1986)
[4] K. J. Nash, P. D. J. Calcott, L. T. Canham, and R. J. Needs, Phys. Rev. B 51 17698 (1995)
[5] H. Heckler, D. Kovalev, and G. Polisski, Phys. Rev. B 60, 7718 (1999).

Chap 3
[1] Chris G. Van de Walle, Phys. Rev. B 39, 1871 (1989).
[2] D. J. Paul, Semicond. Sci. Technol. 19, R75 (2004).
[3] Rieger M. M. and Vogl P. Phys. Rev. B 48 14276 (1993).
[4] D.J. Robbins, L.T. Canham, S. J. Barnett, A. D. Pitt, and P. Calcott, J. Appl. Phys. 71, 1407 (1992).
[5] S. Richard, F. Aniel, G. Fishman, and N. Cavassilas, J. Appl. Phys. 94, 1795 (2003).
[6] A.T. Blumenau, R.Jones, S. Oberg, et al, Phys. Rev. Lett. 87, 187404 (2001).
[7] H. Heckler, D. Kovalev, and G. Polisski, Phys. Rev. B 60, 7718 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文