跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡明瑋
研究生(外文):Ming-Wei Tsai
論文名稱:周期性金屬/介電材料孔洞陣列之穿透特性及在窄頻紅外線熱輻射源之應用
論文名稱(外文):Transmission Properties of Periodic Metal/Dielectric Hole Array and Its Application to Narrow Bandwidth Infrared Thermal Emitter
指導教授:李嗣涔李嗣涔引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:113
中文關鍵詞:表面電漿紅外線黑體輻射光源異常穿透
外文關鍵詞:surface plasmoninfraredblackbodyemitterlight sourceextraordinary transmission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,用理論和實驗探討表面電漿極化子在金屬週期陣列孔洞中的交互作用。在方形排列下之銀金屬正方形孔洞之異常穿透現象已經被驗證出來。當方形孔洞的大小接近於週期之半時(a/2),簡併態( 1,0)銀/矽和(0, 1)銀/矽模態分裂為二趨於明顯。且當大小大於週期之半時,表面電漿極化子色散圖顯示光子能隙變大。在方形排列下之銀金屬長方形孔洞之異常穿透現象也被驗證出來。對於不同的長寬比孔洞之表面電漿極化子色散圖驗證了侷限表面電漿子的形成是由於在長方形邊緣產生藕合之故。各種結構的窄頻紅外線光源被製作出來。三層結構(銀/二氧化矽/銀)中上面金屬為六角週期性排列之孔洞陣列,展示了能夠發出(1,0)銀/二氧化矽模態的窄頻輻射源。對於不同二氧化矽厚度的反射色散圖顯示,當二氧化矽很薄時,從上金屬表面所誘發的表面電漿極化子與下金屬產生強烈的藕合,造成了二氧化矽等效折射率的上升,使得輻射頻譜往長波長移動。雙頻段表面電漿熱輻射源也被成功的製作出來。可以清楚的觀察到來自於銀/二氧化矽和銀/空氣模態的兩個輻射頻段可以被清楚的觀察。當中間的二氧化矽層為平坦的,所輻射出來的頻寬將比穿洞的二氧化矽的元件來的窄。金屬/二氧化矽/金屬熱輻射源在不同的上下週期排列顯示在上表面的表面電漿模態將直接藕合成光輻射出,但下表面的表面電漿模態是否可以輻射出來端看輻射的尖峰是否有對應到上表面的表面電漿模態來決定。三層結構(銀/二氧化矽/金)適當設計可以達到極窄頻的紅外線輻射源的要求。用金取代銀做為底層金屬之原因是金能承受在高溫用電漿輔助化學氣相沈積法所長的二氧化矽。當二氧化矽厚度足夠厚時,由於在上下兩層金屬來回震盪使得共振腔模態出現。混和的共振腔/表面電漿模態被二氧化矽膜厚與上表面金屬的週期性所共同決定。
The interaction of surface plasmon polartions on a periodic array of metal holes is investigated in theory and experiment. Extraordinary transmission through a silver film perforated with square shaped hole arrays in a square lattice was demonstrated. When the squared hole size is close to a half lattice constant a/2, the split of the degenerate (±1,0) Ag/Si and (0,±1) Ag/Si modes into two peaks becomes apparent. SPPs dispersion relations demonstrate the photonic bandgap opens up when the size of the squared hole exceeds a half lattice constant a/2. Extraordinary transmission through a silver film perforated with rectangular shaped hole arrays in a square lattice was demonstrated. Additionally, the SP dispersion relations of the square hole array with different aspect ratios of holes were measured that demonstrate that the LSPs were created by the coupling of surface plasmons between the edges of the rectangular holes. Various narrow bandwidth infrared light sources are reported. This triple layer Ag/SiO2/Ag structure, with top Ag layer is perforated by hexagonal-arranged hole arrays, exhibit narrow bandwidth emission that comes (1,0) Ag/SiO2 degenerate modes. Its reflection dispersion relation with different SiO2 thicknesses shows that when the SiO2 layer is thin, SPPs induced from top metal plate are strongly coupled with the bottom metal that causes the increasement of the effective refractive index of SiO2 which reshifts the emission wavelength. Two-colored plasmonic thermal emitters are fabricated successfully. Two emission peaks from Ag/SiO2 and Ag/Air SPPs can be clearly seen. It was demonstrated that when the central SiO2 layer of the sandwiched structure is flat without holes, the emission spectrum is narrower than that of the perforated one. Metal/SiO2/metal trilayer thermally generated infrared emitters with different top and bottom periodic metal arrangements were fabricated and their emission spectra were measured. It is found that the top surface plasmon converted to light radiation directly, whereas the bottom surface plasmon can radiate out when its emission peak position matches that of the top surface plasmon. A suitable designed trilayer Ag/SiO2/Au thermal emitter can be used as the narrow bandwidth infrared light source. The use of Au instead of Ag as bottom metal layer is because Au can sustain the high temperature deposition of SiO2 by plasma enhanced chemical vapor deposition. When the SiO2 layer is thick enough, cavity mode resonance exist, which is generated in the SiO2 layer between two metal film regard as a waveguide and varies with the SiO2 layer thickness. The hybrid cavity/surface plasmon mode is influenced by the film thickness and the periodicity of top Ag film.
Chapter 1 Introduction...................................1

Chapter 2 Influence of Hole Size on Extraordinary Transmission through Silver Film Perforated with Periodic Hole Arrays in Square lattice............................10
2.1 Fundamentals of surface plasmons.....................10
2.1.1 Surface plasmons on smooth surfaces................10
2.1.2 Surface plasmons on the surface with hole arrays in square lattice...........................................17
2.2 Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver film perforated with periodic hole arrays................................21
2.2.1 Experiments........................................22
2.2.1.1 The transmission measurement.....................22
2.2.1.2 The sample preparation of the periodic metal structure................................................22
2.2.2 Results and discussion.............................25
2.2.3 Conclusions........................................31

Chapter 3 Dispersion of Surface Plasmon Polaritons on Silver Film with Rectangular Hole Arrays in a Square Lattice..................................................32
3.1 Experiments..........................................33
3.2 Results and discussion...............................33
3.3 Conclusions..........................................42

Chapter 4 Infrared Plasmonic Thermal Emitter............44
4.1 High performance mid-infared narrow-band plasmonic thermal emitter..........................................44
4.1.1 Experiments........................................45
4.1.1.1 The sample preparation of the periodic metal structure................................................45
4.1.1.2 The reflection measurement.......................47
4.1.1.3 The thermal emission measurement setup...........47
4.1.2 Results and discussion.............................50
4.1.2.1 The emission properties..........................50
4.1.2.2 The dispersion relation properties...............58
4.1.2.3 The coupling equation of double dielectic layer in plasmonic thermal emitter................................63
4.1.3 Conclusions........................................65
4.2 Two color squared-lattice plasmonic thermal emitter..66
4.2.1 Experiments........................................67
4.2.1.1 The sample preparation of the periodic metal structure................................................67
4.2.2 Results and discussion.............................69
4.2.2.1 The emission properties..........................69
4.2.3 Conclusions........................................74

Chapter 5 The Coupling Characteristics between Surface Plasmon on Top and Bottom Metals of Infrared Plasmonic Thermal Emitter..........................................75
5.1 Thin SiO2 layer......................................75
5.1.1 Experiments........................................76
5.1.2 Results and discussion.............................79
5.1.3 Conclusions........................................86
5.2 The characteristics of cavity mode in trilayer Ag/SiO2/Au plasmonic thermal emitter with thick SiO2 layer....................................................86
5.2.1 Experiments........................................87
5.2.2 Results and discussion.............................90
5.2.3 Conclusions.......................................101

Chapter 6 Conclusions..................................103

Bibliography............................................106
[1]R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[2]H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
[3]Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163 (1944).
[4]H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[5]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).
[6]C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
[7]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Science 297, 820 (2002).
[8]Liang-Bin Yu, Ding-Zheng Lin, Yi-Chun Chen, You-Chia Chang, Kuo-Tung Huang, Jiunn-Woei Liaw, Jyi-Tyan Yeh, Jonq-Min Liu, Chau-Shioung Yeh, and Chih-Kung Lee, Phys. Rev. B 71, 041405(R) (2005).
[9]Wataru Nomura, Motoichi Ohtsu, and Takashi Yatsui, Appl. Phys. Lett. 86, 181108 (2005).
[10]Zhaowei Liu, Jennifer M. Steele, Hyesog Lee, and Xiang Zhang, Appl. Phys. Lett. 88, 171108 (2006).
[11]Seyoon Kim, Hwi Kim, Yongjun Lim, and Byoungho Lee, Appl. Phys. Lett. 90, 051113 (2007).
[12]W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, Phys. Rev. B 54, 6227 (1996).
[13]S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. B 52, 11441 (1995).
[14]Ming-Wei Tsai, Tzu-Hung Chuang, Hsu-Yu Chang and Si-Chen Lee, Appl. Phys. Lett. 88, 213112 (2006).
[15]D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel, Phys. Rev. B 70, 033404 (2004).
[16]Nicolas Bonod, Stefan Enoch, Lifeng Li, Popov Evgeny, Michel Neviere, Opt. Express 11, 482 (2003).
[17]Benfeng Bai, Lifeng Li, Lijiang Zeng, Opt. Lett. 30, 2360 (2005).
[18]Y. H. Ye, J. Y. Zhang, Opt. Lett. 30, 1521 (2005).
[19]J. A. Dionne, H. J. Lezec, and Harry A. Atwater, Nano Lett. 6, 1928 (2006).
[20]Fumiaki Miyamaru and Masanori Hangyo, Phys. Rev. B 71, 165408 (2005).
[21]H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, Opt. Lett. 31, 516 (2006).
[22]J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
[23]A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, Phys. Rev. B 74, 073408 (2006).
[24]A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, Phys. Rev. B 74, 155435 (2006).
[25]Shaun M. Williams, Amanda D. Stafford, Trisha M. Rogers, Sarah R. Bishop, and James V. Coe, Appl. Phys. Lett., 85, 1472 (2004).
[26]A. Degiron and T. W. Ebbesen, J. Opt. A: Pure Appl. Opt. 7 S90 (2005).
[27]A. Degiron, H.J. Lezec, N. Yamamoto and T.W. Ebbesen, Optics Communications 239, 61 (2004).
[28]K. L. van der Molen,K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
[29]K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
[30]R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, Phys. Rev. Lett. 92, 037401 (2004).
[31]Hua Cao, Ajay Nahata, Opt. Express 12, 3664 (2004).
[32]F. J. García-Vidal, Esteban Moreno, J. A. Porto, and L. Martín-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
[33]R. Gordon and A. G. Brolo, Opt. Express 13, 1933 (2005).
[34]S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Müller, Ch. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu and Q. H. Park , Appl. Phys. Lett. 81, 3239 (2002).
[35]Romain Quidant, Goncal Badenes, Stéphanie Cheylan, Ramon Alcubilla, Jean-Claude Weeber, Christian Girard, Opt. Express 12, 282 (2004).
[36]Romain Quidant, Dmitri Petrov, Gonçal Badenes, Opt. Lett. 30, 1009 (2005).
[37]Hanwei Gao, Joel Henzie, and Teri W. Odom, Nano Lett. 6, 2104 (2006).
[38]Eun-Soo Kwak, Joel Henzie, Shih-Hui Chang, Stephen K. Gray, George C. Schatz, and Teri W. Odom, Nano Lett. 5, 1963 (2005).
[39]Kevin A. Tetz, Rostislav Rokitski, Maziar Nezhad, and Yeshaiahu Fainman, Appl. Phys. Lett. 86, 111110 (2005).
[40]Sri Priya Sundararajan, Jennifer Marie Steele, and Naomi J. Halas, Appl. Phys. Lett. 88, 063115 (2006).
[41]Tae-In Jeon and D. Grischkowsky, Appl. Phys. Lett. 88, 061113 (2006).
[42]J. W. Lee, M. A. Seo, D. S. Kim, S. C. Jeoung, Ch. Lienau, J. H. Kang, and Q.-Han Park, Appl. Phys. Lett. 88, 071114 (2006).
[43]M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George and D. S. Choi, I. El-Kady and R. Biswas, Appl. Phys. Lett. 81, 4685 (2002).
[44]I. El-Kady, R. Biswas, Y. Ye, M. F. Su, I. Puscasu, Martin Pralle, E. A. Johnson, J. Daly and A. Greenwald, Photonics and Nanostructures - Fundamentals and Applications 1, 69 (2003).
[45]Irina Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas and C. G. Ding, J. Appl. Phys. 98, 013531 (2005).
[46]S. Y. Lin, J. Moreno, and J. G. Fleming, Appl. Phys. Lett. 83, 380 (2003).
[47]Shawn-Yu Lin, J. G. Fleming, and I. El-Kady, Appl. Phys. Lett. 83, 593 (2003).
[48]Ming-Wei Tsai, Tzu-Hung Chuang, Chao-Yu Meng, Yi-Tsung Chang and Si-Chen Lee, Appl. Phys. Lett. 89, 173116 (2006).
[49]Philippe Ben-Abdallah and Bo Ni, J. Appl. Phys. 97, 104910 (2005).
[50]Ivan Celanovic, David Perreault, and John Kassakian, Phys. Rev. B 72, 075127 (2005).
[51]David L. C. Chan, Marin Soljačić, and J. D. Joannopoulos, Opt. Express 14, 8785 (2006).
[52]R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, Phys. Rev. B 74, 045107 (2006).
[53]David L. C. Chan, Marin Solja i , and J. D. Joannopoulos, Phys. Rev. E 74, 016609 (2006).
[54]S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, Appl. Phys. Lett. 85, 182 (2004).
[55]Dawn K. Gifford and Dennis G. Hall, Appl. Phys. Lett. 81, 4315 (2002).
[56]Jing Feng, Takayuki Okamoto, and Satoshi Kawata, Appl. Phys. Lett. 87, 241109 (2005).
[57]Julie S. Biteen, Nathan S. Lewis, Harry A. Atwater, Hans Mertens, and Albert Polman, Appl. Phys. Lett. 88, 131109 (2006).
[58]Eiji Takeda, Toshihiro Nakamura, Minoru Fujii, Satoru Miura, and Shinji Hayashi, Appl. Phys. Lett. 89, 101907 (2006).
[59]J. Vuckovic, M. Loncar, A. Scherer, IEEE J. Quant. Electr. 36, 1131 (2000).
[60]K. Okamoto et al., Appl. Phys. Lett. 87, 071102 (2005).
[61]Xiangang Luo and Teruya Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[62]Zhao-Wei Liu, Qi-Huo Wei, and Xiang Zhang, Nano Lett. 5, 957 (2005)
[63]D. B. Shao and S. C. Chen, Nano Lett. 6, 2279 (2006).
[64]Bo Liedberg, Claes Nylander and Ingemar Lunström, Sens. Actuators, 4, 299 (1983).
[65]W. -C. Kuo, C. Chou, and H. -T. Wu, Opt. Lett. 28, 1329-1331 (2003).
[66]S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, Phys. Rev. Lett. 86, 3008 (2001).
[67]Sergey I. Bozhevolnyi, Valentyn S. Volkov, Eloïse Devaux, Jean-Yves Laluet and Thomas W. Ebbesen, Nature 440, 508 (2006).
[68]Sergey I. Bozhevolnyi, Valentyn S. Volkov, Eloïse Devaux, and Thomas W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005).
[69]Lin Zhou, Xiao-qiang Yu, and Yong-yuan Zhu, Appl. Phys. Lett. 89, 051901 (2006).
[70]B. Wang and G. P. Wang, Opt. Lett. 29, 1992 (2004).
[71]Hideki T. Miyazaki and Yoichi Kurokawa, Appl. Phys. Lett. 89, 211126 (2006).
[72]L. Liu, Z. Han, and S. He, Opt. Express 13, 6645 (2005).
[73]Valentyn S. Volkov, Sergey I. Bozhevolnyi, Eloïse Devaux, Jean-Yves Laluet, and Thomas W. Ebbesen, Nano Lett. 7, 880 (2007).
[74]Claire Gmachl, Deborah L. Sivco, Raffaele Colombelli, Federico Capasso and Alfred Y. Cho, Nature 415, 883 (2002).
[75]Richard Maulini, Mattias Beck, and Jérôme Faist, Emilio Gini, Appl. Phys. Lett. 84, 1659 (2004).
[76]Geoffrey Duxbury, Nigel Langford, Michael T. McCulloch and Stephen Wright Chem. Soc. Rev., 34, 921 (2005).
[77]Hong-Gyu Park, Se-Heon Kim, Soon-Hong Kwon, Young-Gu Ju, Jin-Kyu Yang, Jong-Hwa Baek, Sung-Bock Kim and Yong-Hee Lee, Science, 305, 1444 (2004).
[78]Yoshihiro Akahane, Takashi Asano, Bong-Shik Song and Susumu Noda, Nature 425, 944 (2003).
[79]William L. Barnes, Alain Dereux and Thomas W. Ebbesen, Nature (London) 424, 824 (2003).
[80]C. J. Powell, J. B. Swan, Phys. Rev. 118, 640 (1960).
[81]M.A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr. , and C. A. Ward, Applied Optics 22, 1099 (1983).
[82]E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
[83]Ming-Wei Tsai, Tzu-Hung Chuang, Hsu-Yu Chang, and Si-Chen Lee, Appl. Phys. Lett. 89, 093102 (2006).
[84]D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. kim, Q. H. Park, and C. Lienau, Phys. Rev. Lett. 91, 143901 (2003).
[85]Roland Muller, Viktor Malyarchuk, and Christoph Lienau, Phys. Rev. B 68, 205415 (2003).
[86]S. Collin, F. Pardo, and J. -L. Pelouard, Opt. Express 15, 4310 (2007).
[87]Dawn K. Gifford and Dennis G. Hall, Appl. Phys. Lett. 80, 3679 (2002).
[88]Tzu-Hung Chuang, Ming-Wei Tsai, Yi-Tsung Chang and Si-Chen Lee, Appl. Phys. Lett. 89, 173128 (2006).
[89]T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, Opt. Lett. 26, 1972 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top