跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智超
研究生(外文):Chih-Chao Chang
論文名稱:使用耦合電感設計2.4GHz帶通濾波器及矩形環共振器設計10GHz帶通濾波器
論文名稱(外文):The design of 2.4 GHz band-pass filter using coupled inductors and 10 GHz band-pass filters using rectangular ring resonators
指導教授:盧信嘉
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:61
中文關鍵詞:通濾波器互感電感低溫共燒陶瓷共振器矩形環共振器
外文關鍵詞:band-pass filtercoupled inductorLTCCresonatorrectangular ring resonator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文可以分為兩大部分,第一部份是應用於無線區域網路的帶通濾波器,利用先進BCB製程與耦合電感的效應以降低設計時所需要的面積。第二個部份是應用於雷達車輛偵測器上的帶通濾波器,利用矩形環共振器的架構來產生具有兩個傳輸零點的效應,其原理是利用共振器中微帶線的轉角寄生電容來實現傳輸零點,並且本文中亦提出對於傳輸零點與奇偶模態頻率上的公式推導,其頻率上的變化會隨著矩形共振器長寬的變化來改變,最後是利用氧化鋁基板和低溫共燒陶瓷(low temperature co-fire ceramic, LTCC)之技術去實現矩形環共振器。
There are two parts in this thesis. The first part is the design of band-pass filters for WLAN using the BCB process and the coupled inductors to reduce the required area. The second part is the design of band-pass filters for radar vehicles’ detectors using the two transmission zeros from the structure of the rectangular ring resonators. The transmission zeros are realized using the parasitic capacitance at the corner of microstrip lines in the rectangular ring resonators. We also derive the equations to predict the transmission zero and dual-mode frequencies of resonators. Those frequencies will change when the length and width of rectangular resonators change. Finally, we implement the rectangular ring resonators using the alumina and LTCC process.
Abstract
Table of Contents
List of Figure
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Filters in WLAN 2
1.3 Filters in radar-microwave vehicle detection radar 3
1.4 BCB process 4
1.5 LTCC process 6
1.6 Overview of this thesis 11
Chapter 2 Filters 12
2.1 Introduction 12
2.2 Prototype low-pass filter and its elements 14
2.3 Prototype band-pass filter and its elements 17
2.4 Band-pass filter with admittance inverters 18
2.5 Practical band-pass filter implementation 20
Chapter 3 Design of Band-pass Filter with Mutual Inductor 24
3.1 Background 24
3.2 Design of the mutual inductor 24
3.3 The compact second-order band-pass filter 27

Chapter 4 Ring Resonators 29
4.1 Introduction 29
4.2 Simple model of ring resonators 29
4.2.1 Magnetic-wall model of ring resonators 31
4.2.2 Improvement of the magnetic-wall model 32
4.3 Effect of curvature in microstrip line 34
4.4 Analysis of rectangular ring resonators 35
4.4.1 Dual-mode of rectangular ring resonators 37
4.4.2 Transmission zeros of rectangular ring resonators 40
Chapter 5 Design of Ring Resonator Filters for Vehicles’ Detectors 43
5.1 Introduction 43
5.2 Characteristics verification of resonators in LTCC process 44
5.3 Design ring resonant filter using multi-layer in LTCC process 48
5.4 Characteristics verification of resonators in alumina process 53
5.5 Design of resonator filter in alumina 55
Chapter 6 Conclusion 58
Appendix A 59
Reference 60

List of Figures

Fig.1-1 The block diagram of WLAN front-end-module [1-1]. 2
Fig.1-2 The structure of the vehicle-detecting system. 3
Fig.1-3 The basic structure of BCB process. 5
Fig.1-4 The structure of BCB process with capacitor layer. 5
Fig.1-5 Multilayer structure of LTCC. 7
Fig.1-6 Process steps for manufacturing of LTCC [1-2]. 9
Fig.2-1 Four basic filter type, where α means signal attenuation (a) low-pass, (b) high-pass, (c) band-stop and (d) band-pass [2-1]. 12
Fig.2-2 Actual attenuation profiles for three different types of low-pass filters [2-1]. 13
Fig.2-3 Ladder circuits for low-pass filter prototypes and their element definitions. 14
Fig.2-4 The ladder LC lump circuits for low-pass filter prototypes and their lump values. 16
Fig.2-5 The ladder LC lump circuits for band-pass filer prototypes and their lump. 18
Fig.2-6 Operation of admittance inverters. 18
Fig.2-7 Admittance inverters used to convert a series LC circuit into an equivalent circuit with a shunt LC circuit. 19
Fig.2-8 Band-pass filters with admittance inverters. 19
Fig.2-9 Lumped-element admittance inverters:(a) inductor π-network and (b) capacitor π-network. 20
Fig.2-10 Band-pass filters using lumped-element admittance inverters 21
Fig.2-11 Band-pass filter after simplified. 22
Fig.2-12 The second-order band-pass filter. 23


Fig.2-13 Simulation results of the second-order band-pass filter at 2.45 GHz. 23
Fig.3-1 (a) Circuit symbol for coupled inductors, (b) alternative representation of the schematic, and (c) a reciprocal two-port network. 25
Fig.3-2 (a) The layout of the mutual inductors. (b) Extracted value of mutual inductors. Q1 is the quality factor of inductor LL1, and QM is the quality factor of inductor MM. 27
Fig.3-3 (a) Layout of the compact second-order band-pass filter, and (b) its simulationresult. 28
Fig.4-1 The microstrip ring resonator. 30
Fig.4-2 Magnetic-wall model of the ring resonator. 31
Fig.4-3 (a) Microstrip line and its electric fields, and (b) the planar waveguide model of a microstrip line. 33
Fig.4-4 (a) Microstrip bend and its (b) equivalent circuit. 34
Fig.4-5 Structure of dual-mode filter applying an impedance step as perturbation [4-4]. 36
Fig.4-6 Schematic diagram of a microstrip ring resonator [4-5]. 36
Fig.4-7 Dual-mode rectangular ring resonator topology. 37
Fig.4-8 (a) Odd-mode equivalent circuit of the rectangular ring resonator in Fig.4-7. (b) Even-mode equivalent circuit of the rectangular ring resonator in Fig.4-7. 38
Fig.5-1 (a) The layout of an example resonator with and . (b) The S21 of the dual-mode resonator shown in Fig.5-1(a). 45
Fig.5-2 This graph corresponding to the value shown in Table 5-1. 46


Fig.5-3 This graph corresponding to the value shown in Table 5-2. 47
Fig.5-4 The resonator uses the multi-layer structure. 49
Fig.5-5 Insertion loss of the multi-layer structure swept under different . 49
Fig.5-6 (a) The final layout and (b) simulation result of the rectangular ring resonator using multi-layer substrate. 52
Fig.5-7 This graph corresponding to the value shown in Table 5-5. 54
Fig.5-8 This graph corresponding to the value shown in Table 5-6. 55
Fig.5-9 (a) The final layout and (b) the simulation result of the rectangular ring resonator in alumina process. 56


List of Tables

Table 1-1 Available dielectric material and design rules for inductor layer and capacitor. 6
Table 3-1 Performance comparison of band-pass filters. 28
Table 5-1 The normalized frequencies calculated by our equations theoretically using Maple 10 software, where the center frequency is the average of and . 46
Table 5-2 Normalized frequencies calculated by Agilent Momentum. 47
Table 5-3 Normalized frequencies extracted from Fig.5-5. 50
Table 5-4 Normalized frequencies by our equations with . 51
Table 5-5 Normalized frequencies by our equations. 53
Table 5-6 Normalized frequencies calculated by Agilent Momentum. 54
Table 5-7 Performance comparison of resonator filters. 57
[1-1] http://www.maxim-ic.com/products/wireless/
802.11b_wlan_transceiver_pa_handsets.cfm

[1-2] http://microwave.ee.cuhk.edu.hk/

[1-3] http://www.ltcc.de/

[2-1] Reinhold Ludwig, Pavel Bretchko, RF circuit design/theory and applications,
Upper Saddle River, NJ:/Prentice Hall 2000.

[2-2] David M. Pozar, Microwave Engineering, John Wiley & Sons, Inc., 2005.

[2-3] Jia-Sheng Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.

[2-4] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, New York:McGraw-Hill 1980.

[2-5] http://www.telephus.com/html/products/integrated.htm

[2-6] K. H. Tsai, “Differential Bandpass filters and differential diplexer for WLAN using LTCC,” NTU Master Thesis, July 2005.

[3-1] Lap Kun Yeung, and Ke-Li Wu,” A compact second-order LTCC band-pass filter with two finite transmission zeros,” IEEE Trans. Microwave Theory and Techniques, Vol. 51, pp. 337-341, Feb. 2003.

[4-1] Kai Chang, Microwave Ring Circuits and Antennas, John Wiley & Sons, Inc., 1996.

[4-2] I. Wolff and N. Knoppik, “Microstrip ring resonator and dispersion measurements,” Electron. Lett., Vol. 7, No. 26, pp. 779-789, December 30, 1971.

[4-3] R. P. Owens, “Curvature effect in microstrip ring resonators,” Electron. Lett., Vol. 12, No. 14, pp. 356-357, July 8, 1967.

[4-4] M. Kirschning, R. H. Jansen, and M. H. L. Koster, “Measurement and computer-aided modeling of microstrip discontinuities by an improved resonator model,” in 1983 IEEE MTT-S International Microwave Symposium Digest, pp. 495-497, June 1983.

[4-5] Michiaki Matsuo, Hiroyuki Yabuki, and Mitsuo Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Trans. Microwave Theory and Techniques, Vol. 49, No. 7, July 2001.

[4-6] Arun Chandra Kundu and Ikuo Awai, “Control of Attenuation Pole Frequency of a Dual-Mode Microstrip Ring Resonator Bandpass Filter,” IEEE Trans. Microwave Theory and Techniques, Vol. 49, No. 6, June 2001.

[4-7] Chen Sen Li, “Design of Dual-Mode Rectangular Ring Filter on V-band,” Master Thesis, National Taiwan University, 2007.

[4-8] J. Reed and G. H. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microwave Theory Tech., Vol. MTT-4, No. 10, pp. 246–252, Oct. 1956.

[4-9] S. W. Wang, “Design of V-band passive component-filters and polarizers,” Master Thesis, National Taiwan University, 2003.

[4-10] Maplesoft, a division of Waterloo Maple Inc. 1981-2005. http://www.maplesoft.com/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 瞿韶華:〈創造與見證歷史的閻伯川先生〉國史館館刊 1992.12
2. 繆玉青:〈閻錫山與孫中山先生--兼述辛亥山西光復經過〉山西文獻 1992.01
3. 盧學禮:〈閻錫山先生經濟改革的理念與實踐〉山西文獻 1994.01
4. 盧學禮:〈閻錫山先生土地改革的歷程〉山西文獻 1995.01
5. 鄧勵豪:〈闡述閻伯川先生之政哲理念〉山西文獻 1992.01
6. 劉象山:〈閻錫山傳〉 國史館館刊 1993.06
7. 林秋敏:〈閻錫山與山西天足運動〉國史館館刊 1995.06
8. 方聞:〈閻伯川先生有何著述〉山西文獻 1993.01
9. 楊靜利(1999),老年人的居住安排-子女數量與同居傾向因素之探討,人口學刊,第20期,167-183。
10. 陸洛、陳欣宏(2002),台灣變遷社會中老人的家庭角色調適及代間關係初探,應用心理研究,第14期,221-249
11. 伊慶春、陳玉華(1998),奉養父母方式與未來奉養態度之關聯,人口學刊,第 19期, 1-32。
12. 成中英:〈現代新儒建立的基礎:「仁學」與「人學」合一之道〉《鵝湖月刊》1991第17卷第4、5期 總號196、197
13. 朱學勤:〈老內聖開不出新外王-評新儒家之政治哲學〉《二十一世紀雙月刊》 第2期 總號9 1992
14. 吳光:〈略論儒學的衰落與轉型-從清代實學到代新儒學〉《鵝湖月刊》第15卷第12期 1990
15. 孫效智:〈就陽明學要旨略論新儒家哲學復興之契機〉《中國文化月刊》11月1988