|
[1]K. Tsukamoto, S. Komaki, K. Takanashi, A. Kanazawa, Y. Shoji, H. Ogawa, M. Yoshikawa, S. Asami, M. Kaneta, Y. Suzuki, and Y. Serizawa, “Development of gigabit Millimeter-Wave broadband wireless acces system - system overview,” in Proc. Asia-Pacific Microwave Conf., Seoul, Korea, 2003, pp. 957-960. [2]A. Nordbotten, "LMDS Systems and their application," IEEE Communication Magazine, pp. 150-154, June 2000. [3]D. Hayter; K. Yard, “40 GHZ MVDS parameters and planning standards [multipoint video distribution systems MVDS: The Way Forward,” IEE Colloquium on, 7 Apr. 1992, pp. 2/1-2/6. [4]Y. Shoji, C.-S. Choi, and H. Ogawa, “70-GHz-band OFDM transceivers based on self-Heterodyne scheme for millimeter-wave wireless personal area network,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3664-3674, Oct. 2006. [5]http://www.ieee802.org/15/pub/TG3c.html [6]http://www.soumu.go.jp/joho_tsusin/pressrelease/japanese/denki/000922j603.html [7]http://wireless.fcc.gov/cgi-bin/wtb-document-index.pl?t=0&y=3&m=10 [8]H. Ogawa, “Millimeter-wave wireless personal area network systems,” in Proc. Radio Frequency Integrated Circuits Symp. (RFIC 2006), June 2006, pp. 11-13. [9]K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, K. Ikeda, and N. Takahashi, “1.25Gbps wireless Gigabit Ethernet link at 60GHz-band”, in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 373-376. [10]S. T. Choi, K. S. Yang, S. Nishi, S. Shimizu, K. Tokuda, and Y. H. Kim, “A 60-GHz point-to-multipoint millimeter-wave fiber-radio communication system,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1953-1960, May 2006. [11]K. W. Chang, H. Wang, G. Shreve, J. G. Harrinson, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward-looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microwave Theory and Tech., vol. 43, no. 7, pp. 1659-1668, July 1995. [12]S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, adnd C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” 2005 IEEE Journal of Solid-State Circuits, vol. 40, pp. 2174~2186, Nov. 2005. [13]H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, and W. Kellner, “Low-cost GaAs pHEMT MMIC’s for millimeter-wave sensor application,” IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 2560-2567, Dec. 1998. [14]H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp.472-477, Feb. 2005. [15]C. H. Doan, S. Emami, A. M. Nikneiad, R. W. Brodersen, “Millimwter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005. [16]C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13m CMOS," in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb.2006, pp. 1254-1263. [17] S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA:Artech House, 1999, ch. 7. [18] A. Katz, “Linearization: reducing distortion in power amplifiers,” in IEEE Microwave Magazine, vol. 2, pp.37-49, Dec. 2001 [19] H.-M. Park, D.-H. Baek, K.-I. Jeon, and S. Hong, “A predistortion linearizer using envelope-feedback technique with simplified carrier cancellation scheme for class-A and class-AB power amplifiers,” IEEE Trans. Microw. Theory Tech., vol.48, no. 6, pp.898-904, June 2000. [20] V. Steel, D. Scott, and S. Ludvik, “A 6-18 GHz, high dynamic range MMIC amplifier using a feedforward technique,” IEEE MTT-S Int. Microwave Symp. Digest, pp911-914, 1990. [21] K. Horiguchi, M. Nakayama, Y. Sakai, K. Totani, H. Senda, Y. Ikeda, and O.Ishida, “A high efficiency feedforward amplifier with a series diode linearizer for cellular base stations,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp.797-800. [22] L. Roselli, V. Borgioni, F. Zepparelli, M. Comez, P. Faccin, and A. Casini, “Predistortion circuit design for II and III order simultaneous linearization in multiservice telecommunications apparatuses,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, 2002. [23] Y. Jaehyok, Y. Youngoo, P. Myungkyu, K. Wonwoo, K. Bumman, “Analog predistortion linearizer for high-power RF amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2709-2713, Dec. 2000. [24] C. Bingol, H. Hein, E. Gammn, F. Oehler, W. Doser, K. Riepe, and H. Blanck, “Monolithic upconversion and reference IC for power amplifier linearization using GaAs HBTs,” in IEEE RFIC Symposium Dig., pp279-282, 2000 [25] S. P. Stapleton, “Amplifier Linearization Using Adaptive Digital Predistortion,” Applied Microwave & Wireless, Feb. 2001.158 [26] P. Narozny, H. Tobler, G. K. Kornfeld, R. A. Nunn, B. Adelseck, M. Ludwig, G.Eggers, “Pseudomorphic Ku-band GaAs HFET linearizer preamplifier front end for satellite TWT-amplifiers, ” in Proc. Gallium Arsenide Applications Symp. (GAAS 1993), Oct. 1995, pp. 292-295. [27] K. Yamauchi, M. Nakayama, Y. Ikeda, H. Nakaguro, N. Kadowaki, T. Araki, “An 18 GHz-band MMIC linearizer using a parallel diode with a bias feed resistance and a parallel capacitor,” in IEEE MTT-S Int. Microwave Symp. Dig.,2000, pp. 1507-1510. [28] A. Katz, S. Moochalla, J. Klatskin, “Passive FET MMIC linearizers for C, X, and Ku-band satellite applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 353-356. [29] S. Ogura, K. Seino, A. Kamikokura, H. Hirose, “Development of a compact, broadband FET linearizer for satellite use,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 1195-1198. [30] C. S. Lin, P. S. Wu, H. Y. Chang, and H. Wang, “A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May, 2006. [31] K. A. Remley, “Multisine excitation for ACPR measurements,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 2141-2144. [32] J. S. Ko, J.-K. Kim, B.-K. Ko, D.-B. Cheon, B.-H. Park, “Enhanced ACPR technique by class AB in PCS driver amplifier,” in Proc. VLSI and CAD Conf., 1999, pp. 376-379. “Code of federal regulations, title 47—telecommunication, chapter I,” Federal Communication Commission, part 15—Radio Frequency Devices, sections 15.245 and 15.249, 2004. [33] B. Razavi, RF and Microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998. [34] Q. Gu, RF System Design of Transceiver for Wireless Communications. Spring Street, NY: Springer Science, 2005. [35] K. Allen, “Linearization: Reducing Distortion in Power Amplifiers,” IEEE Microwave Magazine, pp. 37-49, Dec. 2001. [36] J. C. Pedro and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits. Norwood, MA: Artech House, 2003. [37] G. Gonzalex, Microwave transistor Amplifiers Analysis and Design. Upper Saddle River, NJ: Prentice Hall, 1997. [38] P. B. Kenington, High-Linearity RF Amplifier Design. Norwood, MA: Artech House, 2000. [39] S. C. Cripps, Advanced Techniques in RF Power Amplifier Design. Boston, MA:Artech House, 2002. 159 [40] WIN, Inc., 0.15μm InGaAs pHEMT Power Device Model Handbook, 2003. [41] H. Mizutani, N. Funabashi, M. Kuzuhara, Y. Takayama, “Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp.1957-1603, Nov. 1998. [42] G. Hau, T. B. Nishimura, N. Iwata, “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp.1194-1201, June 2001. [43] I. Angelov, H. irath, N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp.2258-2266, Dec. 1992. [44] Sonnet User’s Manual, Release 9.0, Sonnet Software Inc., North Syracuse, NY, May 2003. [45] L. Perraud, M. Recouly, C. Pinatel, N. Sornin, J.-L. Bonnont, F. Benoist, M. Massei, and O. Gibrat, “A direct-conversion CMOS transceiver for the 802.11a/b/g WLAN standard utilizing a Cartesian feedback transmitter,” IEEE J.Solid-State Circuits, vol. 39, no. 12, pp. 2226-2238, Dec. 2004. [46] M. Chongcheawchamnan, M. J. Blewett, K. S. Ang, and I. D. Robertson, “A 900MHz 16-QAM direct carrier modulation transmitter using feedforward linearization,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1495-1498. [47] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, T.-W. Huang, and H. Wang, “A 44-GHz high-linearity MMIC medium power amplifier with a low-loss built-in linearizer,”in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 1575-1578. [48] M. Chongheawchamnan, K. S. Ang, D. Kpogla, S. Nam, S. Lucyszyn, and I. D. Robertson, “Low-cost millimeter-wave transmitter using software radio techniques,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1949–1952. [49] Y.-J. Jeon, H.-W. Kim, M.-S. Kim, Y.-S. Ahn, J.-W. Kim, J.Y. Choi, D.-C. Jung, and J.-H. Shin, “Improved HBT linearity with a “post-distortion”-type collector linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 102-104, Mar., 2003. [50] H.-Y. Chang, J.-H. Tsai, T.-W. Huang, H.-Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 600-602, Sep., 2005. [51] K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeter-wave broadband monolithic even harmonic image rejection mixer,”1998 IEEE MTT-S Int. Microwave Sym., pp. 1443-1446, June 1998. [52] M. Yu, Robert H. Walden, A.E. Schmitz, and M. Lui, “Ka/Q-Band Doubly Balanced MMIC Mixers with Low LO Power,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 10, pp. 424-426, October 2000. [53] 魏淑芬 “毫米波接收端單晶體電路之研製 Design of MMIC Components for Millimeter-Wave Receivers" 國立台灣大學電信工程研究所博士論文, 民國90 年六月, 2006. [54] H. Okazaki, and Y. Yamaguchi, ”Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microwave Theory and Tech., vol. 45, no. 12, pp.2375-2379, Dec. 1997. [55] J.-L. Chen, S.-F. Chang, C.-C. Liu, and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1275-1278. [56] C. F. Campbell, “A fully integrated Ku-band Doherty amplifier MMIC,” IEEE Microw. Wireless Compon. Lett., vol. 9, no. 3, pp. 114-116, Mar., 1999. [57] K. W. Kobayashi, A. K. Oki, A. Gutierrez-Aitken, P. Chin, L. Yang, E. Kaneshiro, P. C. Grossman, K. Sato, T. R. Block, H. C. Yen, and D. C. Streit., “An 18-21 GHz InP DHBT linear microwave Doherty amplifier,” in Proc. IEEE RFIC Symp. Dig., Jun. 2000, pp. 179-182. [58] K. J. Cho, J. H. Kim, and S. P. Stapleton, “A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 292–300, Jan. 2005. [59] B. Shin, J. Cha, J. Kim, Y. Y. Woo, J. Yi, and B. Kim, “Linear power amplifier based on 3-way Doherty amplifier with predistorter,” in IEEE MTT-S Dig., Jun. 2004, pp. 2027–2030. [60] K.-J. Cho, W.-J. Kim, J.-H. Kim, and S. P. Stapleton, “Linearity optimization of a high power Doherty amplifier based on post-distortion compensation,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 748-750, Nov., 2005. [61] Y. Shoji, C.-S. Choi, and H. Ogawa, “70-GHz-band OFDM transceivers based on self-Heterodyne scheme for millimeter-wave wireless personal area network,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3664-3674, Oct. 2006. [62] J. Mikkonen, C. Corrado, C. Evci, and M. Progler, “Emerging wireless broadband networks,” IEEE Communications Magazine, vol. 36, no. 2, pp.112-117, Feb. 1998. [63] R. C. Liu, H. Y. Chang, C. H. Wang, and H. Wang, “A 63GHz VCO using a standard 0.25-μm CMOS process,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2004, pp. 446-447. [64] M. D. Tsai, H. Wang, J. F. Kuan, and C. S. Chang, “A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 402-403. [65] C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13 m CMOS," in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 1254-1263. [66] W. C. Chen, S. Y. Chen, J. H. Tsai, T. W. Huang, and H. Wang, “A 38-48-GHz Miniature MMIC Subharmonic Mixer,” in Proc. Gallium Arsenide Applications Symp. (GAAS 2005), Oct., 2005, pp. 437-440. [67] M. D. Vincentis, and T. Itoh, “A 40 GHz communication link with IF-assisted self-heterodyne direct down conversion,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 91-94. [68] Y. Shoji, K. Hamaguchi, and H. Ogawa, “Millimeter-Wave Remote Self-Heterodyne System for Extremely Stable and Low-Cost Broad-Band Signal Transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 6, pp. 1458-1468, Jun. 2002 [69] K. Maruhashi, K. Ohata, H. Shimaki, Y. Shoji, and H. Ogawa, “Small-size 72-GHz-band transceiver modules utilizing IF self-heterodyne transmission technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1045-1048. [70] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25-27, Jan., 2006. [71] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G.J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006 [72] F.L. Di Alessio, and A. D’Orazio, “Sub-harmonically pumped direct vector modulator,” IEEE Electronics Lett., vol. 39, no. a, pp. 70-71, Jan, 2003. [73] R. Svitek, D. Johnson, and S. Raman, “An active SiGe sub-harmonic direct-conversion receiver front-end design for 5-6 GHz band applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 505-508. [74] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337 Sep. 2000. [75] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid State Circuits, vol. 38, no. 10, pp.1762-1766, Oct., 2003. [76] K-J. Koh, M.-Y. Park, C.-S. Kim, and H.-K. Yu, “Subharmonically pumped CMOS frequency conversion (up and own) circuits for 2-GHz WCDMA direct-conversion transceiver,” IEEE J. Solid State Circuits, vol. 39, no. 6, pp.871-884, June, 2004. [77] L. A. MacEachern and T. Manku, “A charge-injection method for Gilbert cell biasing,” in Proc. IEEE Canadian Conf. Electric Computer Eng., vol. 1, May 1998, pp. 365–368. [78] D. M. Pozar, Microwave Engineering. New York: Wiley, 1998. [79] A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receiver,” IEEE J. Solid State Circuits, vol.39, no. 12, pp.2259-2268, Dec., 2004. [80] W. Chen, Theory and Design of Broadband Matching Networks. Oxford, U.K.:Pergamon, 1976.
|