跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡政翰
研究生(外文):Jeng-Han Tsai
論文名稱:毫米波發射器線性化及十億位元無線通信系統
論文名稱(外文):Millimeter-wave Transmitter Linearization and Gigabit Wireless Communication Systems
指導教授:黃天偉
指導教授(外文):Tian-Wei Huang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:164
中文關鍵詞:線性化毫米波功率放大器發射器十億位元
外文關鍵詞:LinearizationMillimeter-wavePower amplifierTransmitterGigabit
相關次數:
  • 被引用被引用:2
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究方向是著重於研究毫米波發射器線性化及毫米波十億位元(Gigabits)無線通信系統。
隨著無線通信系統的快速發展,微波頻帶已趨近於飽和,為了能有更寬的頻譜來達成更快的傳輸速率,寬頻的毫米波無線通信系統將被需要,為了有效率的使用頻譜,現今的無線通訊系統多採用複雜的數位調變技術,期望在有限的頻譜內達到更快的傳輸速率,而這些使用數位調變技術的無線通訊系統對發射器的線性度要求非常高,加上在毫米波頻段,功率放大器每增加1dBm線性輸出功率所花費的代價是很大的,因此再此論文的第一部份我們研究了功率放大器的線性化技術,並提出了一毫米波單晶積體電路低損耗內建式的線性器架構,此線性器可以提升功率放大器的線性輸出功率,並且有低損耗,小體積,低複雜度,零功率消耗的優點,這些優點讓此線性器適合毫米波的應用。為了驗證此線性器,我們將此線性器整合到毫米波功率放大器中來達成前置失真線性化,經過前置失真線性化的放大器線性度有顯著改進,頻譜成長可以改善8 dB,線性輸出功率最高可提升3 dBm,這是首次在毫米波單晶積體電路中實現線性化的技術,此外我們設計一毫米波40 GHz至48 GHz寬頻次諧波發射器晶片,此晶片整合了一個的次諧波混頻器、一個具有濾波特姓的緩衝放大器、和一個內建式的線性器,此線性器應用在毫米波發射器中,可達成後置失真線性化,提升整各毫米波發射器的線性度,另外我們提出了在多核帝放大器中整合後置失真線性化系統,由於多核帝放大器與後置失真系統架構相似,因此我們可以在不增加面積下,同時提升毫米波功率放大器的線性度與效率。
接下來我們介紹毫米波十億位元無線通信系統,我們將設計的晶片組裝成毫米波無線收發模組,做發射與接收系統測試,並完成了毫米波收發系統展示平台。但是為了毫米波消費市場的需求,這些系統需要高效能,高整合度,低功率消耗,低成本的電路設計,因此我們用互補式金氧半導體(CMOS)製程設計了適用在直接轉換(direct-conversion)收發系統中的次諧波調變器與解調器,次諧波混頻的技術可以改善在直接轉換收發系統中,本地振盪洩漏的問題,另外為了在毫米波產生四相位的本地震盪訊號,我們在CMOS製程中設計一振盪訊號四相位分波器,接下來為了寬頻的需要,此次諧波調變器與解調器中的混頻器採用了低品質因素(Q)值的設計,最後量侧結果此次諧波調變器與解調器可以有大於十億位元的調變與解調能力。
The purpose of this dissertation is to develop millimeter-wave transmitter linearization and wireless Gigabit communication systems.
As the demands for wireless communication technology are growing rapidly recently, the microwave frequency bands have been saturated with various communication applications. For high-capacity and high-speed wireless data transmission, the communication channel needs larger bandwidth. Therefore millimeter-wave frequency bands are the solution for high data rate communication system, even wireless Gigabit applications. To enhance the spectral efficiency, modern wireless communication systems tend to use complex digital modulation schemes. These communication systems require a high-linearity MMW transmitter to minimize the spectral re-growth and maintain modulation accuracy. However linear output power of the power amplifier is an expensive resource. Therefore, in this dissertation we proposed a low-loss built-in linearizer using a shunt cold-mode HEMT. The linearizer has advantages of low insertion loss, compact die-size, and zero dc consumption and suitable for MMW linearization applications. To demonstrate the function of the linearizer, MMW power amplifier with built-in linearizaer for pre-distortion linearization has been presented. After linearization, the linearity of the power amplifier has been improved and the spectrum re-growth can be suppressed by 8 dB. For the same linearity requirements, the linear output power of the MMW power amplifier has been doubled. To the best of our knowledge, this is the first MMW power amplifier with a low-loss built-in linearizer. In addition, a MMW 40-48 GHz broadband sub-harmonic transmitter has been presented. The transmitter consists of a sub-harmonic mixer, a band-pass driver amplifier, and a built-in linearizer. The linearizer with post-distortion characteristic can enhance the linearity of the whole transmitter. Furthermore, a MMW Doherty amplifier with post-distortion linearization is presented. The topology of the Doherty amplifier is similar to a post-distortion system. Therefore we can improve the linearity and efficiency of the amplifier simultaneously without increasing the chip area.
Follow are the introduction of the MMW Gigabit wireless communication systems. For MMW system demonstration, the MMW MMIC chips were assembled to transmitter and receiver modules. The experimental results show the transmitter and receiver modules have been applied to MMW point-to-point communication system successfully. However, for MMW marketplace requirement, not only fabricating a chipset with high performance but also size and cost reductions in the transceiver are important issue. Therefore sub-harmonic modulator and demodulator are designed and fabricated using standard CMOS process for MMW direct-conversion transceiver in this dissertation. The main problem, LO leakage, can be improved by using sub-harmonically pumped mixing technique. A MMW four-way quadrature divider using 90° coupler and 180° balun have been implemented in the CMOS process to provide equal amplitude and quadrature-phases LO signals for sub-harmonically pumped modulator and demodulator. For broadband sub-harmonic modulator and demodulator designs, the low quality factor impedance matching network is design and analysis. Finally the experimental results show the sub-harmonic modulator and demodulator MMIC feature Gigabit modulation and demodulation quality for MMW wireless Gigabit direct-conversion applications.
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Contributions 5
1.4 Dissertation Organization 7
Chapter 2 Linearity of the Wireless MMW Communication Systems 9
2.1 Digital Modulation [33], [34] 10
2.1.1 Binary Phase Shift Keying (BPSK) 10
2.1.2 Quadrature Phase Shift Keying (QPSK) 10
2.1.3 Frequency Shift Keying (FSK) 11
2.1.4 Gaussian-Filtered Minimum Shift Keying (GMSK) 11
2.1.5 Quadrature Amplitude Modulation (QAM) 12
2.2 Linearity Consideration of the System [33], [34] 13
2.2.1 Linear, Time Variant, and Memoryless System 13
2.2.2 Nonlinear Distortion Characterization 14
2.2.3 Harmonic 14
2.2.4 AM-AM Characterization 15
2.2.5 AM-PM Characterization [35] 16
2.2.6 Intermodulation (IM) 17
2.2.7 Third-Order Intercept point (IP3) 19
2.2.8 Adjacent Channel Power Ratio (ACPR) 20
2.2.9 Error Vector Magnitude (EVM) 21
2.3 Power Amplifiers in MMW Communication Systems 22
2.3.1 Classification of Power Amplifiers [37], [38] 23
2.3.2 Reduced conduction angle Amplifier Modes [39] 24
2.3.3 Switching Amplifiers Modes 27
2.4 Linearization Techniques [17], [38], [39] 28
2.4.1 Feedforward 29
2.4.2 Feedback 31
2.4.3 Pre-distortion 32
2.5 Efficiency-Enhancement Techniques [17], [38] 33
2.5.1 Envelope Elimination and Restoration 34
2.5.2 LINC 35
2.5.3 Doherty Amplifier 36
2.6 Summary 37
Chapter 3 Pre-distortion Linearizer for MMW Power Amplifiers 39
3.1 Pre-distortion Linearizer Basics 39
3.2 Shunt Cold-Mode HEMT Linearizer 42
3.2.1 MMIC Process 42
3.2.2 Operation Principle of the Linearizer 43
3.3 MMW Amplifier with Low-loss Built-in Linearizer 49
3.3.1 Device Size Selection for Insertion Loss Minimization 49
3.3.2 Single Stage Medium Power Amplifier with Linearizer 53
3.3.3 Bias Point Selection for Linearity Optimization 56
3.4 Integration of the Linearizer with a Two-stage MMIC Medium Power Amplifier 67
3.4.1 Circuit Design 67
3.4.2 Measurement Results 68
3.5 Application to Linearize Commerical MMW PA Module 74
3.6 Summary 78
Chapter 4 MMW Post-Distortion Linearization Applications 80
4.1 MMW Sub-Harmonic Transmitter with Post-Distortion Linearization 80
4.1.1 Sub-harmonic Mixer 83
4.1.2 Band-pass Driver Amplifier with a Built-in Linearizer 86
4.1.3 Post-Distortion Linearizer 87
4.1.4 Measurement Results 88
4.2 MMW Doherty Amplifier with Post-Distortion Linearization 93
4.2.1 Doherty Amplifier Operation Principle 94
4.2.2 MMW Doherty Amplifier Circuit Design 98
4.2.3 Doherty Amplifier with Post-Distortion Linearization 100
4.2.4 Measurement Results 101
4.3 Summary 107
Chapter 5 MMW Wireless Gigabit Communication Systems 109
5.1 Background 110
5.2 Transceiver Architectures 110
5.2.1 Heterodyne 110
5.2.2 Self-heterodyne 120
5.2.3 Homodyne 121
5.3 MMW Sub-Harmonic Modulator 124
5.3.1 Modulator Operation Principle 125
5.3.2 MMW Four-Way Quadrature Divider 127
5.4 Broadband Sub-harmonic Direct Up-conversion Mixer 130
5.3.4 Measurement Results 133
5.4 MMW Sub-Harmonic Demodulator 139
5.4.1 Demodulator Operation Principle 139
5.4.2 Broadband Sub-harmonic Direct Down-conversion Mixer 141
5.4.3 Measurement Results 146
5.5 Summary 151
Chapter 6 Conclusion 153
References 156
Publications List 163
[1]K. Tsukamoto, S. Komaki, K. Takanashi, A. Kanazawa, Y. Shoji, H. Ogawa, M. Yoshikawa, S. Asami, M. Kaneta, Y. Suzuki, and Y. Serizawa, “Development of gigabit Millimeter-Wave broadband wireless acces system - system overview,” in Proc. Asia-Pacific Microwave Conf., Seoul, Korea, 2003, pp. 957-960.
[2]A. Nordbotten, "LMDS Systems and their application," IEEE Communication Magazine, pp. 150-154, June 2000.
[3]D. Hayter; K. Yard, “40 GHZ MVDS parameters and planning standards [multipoint video distribution systems MVDS: The Way Forward,” IEE Colloquium on, 7 Apr. 1992, pp. 2/1-2/6.
[4]Y. Shoji, C.-S. Choi, and H. Ogawa, “70-GHz-band OFDM transceivers based on self-Heterodyne scheme for millimeter-wave wireless personal area network,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3664-3674, Oct. 2006.
[5]http://www.ieee802.org/15/pub/TG3c.html
[6]http://www.soumu.go.jp/joho_tsusin/pressrelease/japanese/denki/000922j603.html
[7]http://wireless.fcc.gov/cgi-bin/wtb-document-index.pl?t=0&y=3&m=10
[8]H. Ogawa, “Millimeter-wave wireless personal area network systems,” in Proc. Radio Frequency Integrated Circuits Symp. (RFIC 2006), June 2006, pp. 11-13.
[9]K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguchi, K. Ikeda, and N. Takahashi, “1.25Gbps wireless Gigabit Ethernet link at 60GHz-band”, in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 373-376.
[10]S. T. Choi, K. S. Yang, S. Nishi, S. Shimizu, K. Tokuda, and Y. H. Kim, “A 60-GHz point-to-multipoint millimeter-wave fiber-radio communication system,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1953-1960, May 2006.
[11]K. W. Chang, H. Wang, G. Shreve, J. G. Harrinson, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward-looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microwave Theory and Tech., vol. 43, no. 7, pp. 1659-1668, July 1995.
[12]S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, adnd C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” 2005 IEEE Journal of Solid-State Circuits, vol. 40, pp. 2174~2186, Nov. 2005.
[13]H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, and W. Kellner, “Low-cost GaAs pHEMT MMIC’s for millimeter-wave sensor application,” IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 2560-2567, Dec. 1998.
[14]H. Shigematsu, T. Hirose, F. Brewer, M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp.472-477, Feb. 2005.
[15]C. H. Doan, S. Emami, A. M. Nikneiad, R. W. Brodersen, “Millimwter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[16]C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13m CMOS," in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb.2006, pp. 1254-1263.
[17] S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA:Artech House, 1999, ch. 7.
[18] A. Katz, “Linearization: reducing distortion in power amplifiers,” in IEEE Microwave Magazine, vol. 2, pp.37-49, Dec. 2001
[19] H.-M. Park, D.-H. Baek, K.-I. Jeon, and S. Hong, “A predistortion linearizer using envelope-feedback technique with simplified carrier cancellation scheme for class-A and class-AB power amplifiers,” IEEE Trans. Microw. Theory Tech., vol.48, no. 6, pp.898-904, June 2000.
[20] V. Steel, D. Scott, and S. Ludvik, “A 6-18 GHz, high dynamic range MMIC amplifier using a feedforward technique,” IEEE MTT-S Int. Microwave Symp. Digest, pp911-914, 1990.
[21] K. Horiguchi, M. Nakayama, Y. Sakai, K. Totani, H. Senda, Y. Ikeda, and O.Ishida, “A high efficiency feedforward amplifier with a series diode linearizer for
cellular base stations,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp.797-800.
[22] L. Roselli, V. Borgioni, F. Zepparelli, M. Comez, P. Faccin, and A. Casini, “Predistortion circuit design for II and III order simultaneous linearization in multiservice telecommunications apparatuses,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, 2002.
[23] Y. Jaehyok, Y. Youngoo, P. Myungkyu, K. Wonwoo, K. Bumman, “Analog predistortion linearizer for high-power RF amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2709-2713, Dec. 2000.
[24] C. Bingol, H. Hein, E. Gammn, F. Oehler, W. Doser, K. Riepe, and H. Blanck, “Monolithic upconversion and reference IC for power amplifier linearization using GaAs HBTs,” in IEEE RFIC Symposium Dig., pp279-282, 2000
[25] S. P. Stapleton, “Amplifier Linearization Using Adaptive Digital Predistortion,” Applied Microwave & Wireless, Feb. 2001.158
[26] P. Narozny, H. Tobler, G. K. Kornfeld, R. A. Nunn, B. Adelseck, M. Ludwig, G.Eggers, “Pseudomorphic Ku-band GaAs HFET linearizer preamplifier front end for satellite TWT-amplifiers, ” in Proc. Gallium Arsenide Applications Symp.
(GAAS 1993), Oct. 1995, pp. 292-295.
[27] K. Yamauchi, M. Nakayama, Y. Ikeda, H. Nakaguro, N. Kadowaki, T. Araki, “An 18 GHz-band MMIC linearizer using a parallel diode with a bias feed resistance and a parallel capacitor,” in IEEE MTT-S Int. Microwave Symp. Dig.,2000, pp. 1507-1510.
[28] A. Katz, S. Moochalla, J. Klatskin, “Passive FET MMIC linearizers for C, X, and Ku-band satellite applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 353-356.
[29] S. Ogura, K. Seino, A. Kamikokura, H. Hirose, “Development of a compact, broadband FET linearizer for satellite use,” in IEEE MTT-S Int. Microwave Symp.
Dig., 1997, pp. 1195-1198.
[30] C. S. Lin, P. S. Wu, H. Y. Chang, and H. Wang, “A 9-50-GHz Gilbert-cell down-conversion mixer in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May, 2006.
[31] K. A. Remley, “Multisine excitation for ACPR measurements,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 2141-2144.
[32] J. S. Ko, J.-K. Kim, B.-K. Ko, D.-B. Cheon, B.-H. Park, “Enhanced ACPR technique by class AB in PCS driver amplifier,” in Proc. VLSI and CAD Conf., 1999, pp. 376-379. “Code of federal regulations, title 47—telecommunication, chapter I,” Federal Communication Commission, part 15—Radio Frequency Devices, sections 15.245 and 15.249, 2004.
[33] B. Razavi, RF and Microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.
[34] Q. Gu, RF System Design of Transceiver for Wireless Communications. Spring Street, NY: Springer Science, 2005.
[35] K. Allen, “Linearization: Reducing Distortion in Power Amplifiers,” IEEE Microwave Magazine, pp. 37-49, Dec. 2001.
[36] J. C. Pedro and N. B. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits. Norwood, MA: Artech House, 2003.
[37] G. Gonzalex, Microwave transistor Amplifiers Analysis and Design. Upper Saddle River, NJ: Prentice Hall, 1997.
[38] P. B. Kenington, High-Linearity RF Amplifier Design. Norwood, MA: Artech House, 2000.
[39] S. C. Cripps, Advanced Techniques in RF Power Amplifier Design. Boston, MA:Artech House, 2002.
159
[40] WIN, Inc., 0.15μm InGaAs pHEMT Power Device Model Handbook, 2003.
[41] H. Mizutani, N. Funabashi, M. Kuzuhara, Y. Takayama, “Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp.1957-1603, Nov. 1998.
[42] G. Hau, T. B. Nishimura, N. Iwata, “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 6, pp.1194-1201, June 2001.
[43] I. Angelov, H. irath, N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp.2258-2266, Dec. 1992.
[44] Sonnet User’s Manual, Release 9.0, Sonnet Software Inc., North Syracuse, NY, May 2003.
[45] L. Perraud, M. Recouly, C. Pinatel, N. Sornin, J.-L. Bonnont, F. Benoist, M. Massei, and O. Gibrat, “A direct-conversion CMOS transceiver for the 802.11a/b/g WLAN standard utilizing a Cartesian feedback transmitter,” IEEE J.Solid-State Circuits, vol. 39, no. 12, pp. 2226-2238, Dec. 2004.
[46] M. Chongcheawchamnan, M. J. Blewett, K. S. Ang, and I. D. Robertson, “A 900MHz 16-QAM direct carrier modulation transmitter using feedforward linearization,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1495-1498.
[47] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, T.-W. Huang, and H. Wang, “A 44-GHz high-linearity MMIC medium power amplifier with a low-loss built-in linearizer,”in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 1575-1578.
[48] M. Chongheawchamnan, K. S. Ang, D. Kpogla, S. Nam, S. Lucyszyn, and I. D. Robertson, “Low-cost millimeter-wave transmitter using software radio techniques,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1949–1952.
[49] Y.-J. Jeon, H.-W. Kim, M.-S. Kim, Y.-S. Ahn, J.-W. Kim, J.Y. Choi, D.-C. Jung, and J.-H. Shin, “Improved HBT linearity with a “post-distortion”-type collector
linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 3, pp. 102-104, Mar., 2003.
[50] H.-Y. Chang, J.-H. Tsai, T.-W. Huang, H.-Wang, Y. Xia, and Y. Shu, “A W-band high-power predistorted direct-conversion digital modulator for transmitter applications,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 600-602, Sep., 2005.
[51] K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeter-wave broadband monolithic even harmonic image rejection mixer,”1998 IEEE MTT-S Int. Microwave Sym., pp. 1443-1446, June 1998.
[52] M. Yu, Robert H. Walden, A.E. Schmitz, and M. Lui, “Ka/Q-Band Doubly Balanced MMIC Mixers with Low LO Power,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 10, pp. 424-426, October 2000.
[53] 魏淑芬 “毫米波接收端單晶體電路之研製 Design of MMIC Components for Millimeter-Wave Receivers" 國立台灣大學電信工程研究所博士論文, 民國90 年六月, 2006.
[54] H. Okazaki, and Y. Yamaguchi, ”Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microwave Theory and Tech., vol. 45, no. 12, pp.2375-2379, Dec. 1997.
[55] J.-L. Chen, S.-F. Chang, C.-C. Liu, and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1275-1278.
[56] C. F. Campbell, “A fully integrated Ku-band Doherty amplifier MMIC,” IEEE Microw. Wireless Compon. Lett., vol. 9, no. 3, pp. 114-116, Mar., 1999.
[57] K. W. Kobayashi, A. K. Oki, A. Gutierrez-Aitken, P. Chin, L. Yang, E. Kaneshiro, P. C. Grossman, K. Sato, T. R. Block, H. C. Yen, and D. C. Streit., “An 18-21 GHz InP DHBT linear microwave Doherty amplifier,” in Proc. IEEE
RFIC Symp. Dig., Jun. 2000, pp. 179-182.
[58] K. J. Cho, J. H. Kim, and S. P. Stapleton, “A highly efficient Doherty feedforward linear power amplifier for W-CDMA base-station applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 292–300, Jan. 2005.
[59] B. Shin, J. Cha, J. Kim, Y. Y. Woo, J. Yi, and B. Kim, “Linear power amplifier based on 3-way Doherty amplifier with predistorter,” in IEEE MTT-S Dig., Jun. 2004, pp. 2027–2030.
[60] K.-J. Cho, W.-J. Kim, J.-H. Kim, and S. P. Stapleton, “Linearity optimization of a high power Doherty amplifier based on post-distortion compensation,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 748-750, Nov., 2005.
[61] Y. Shoji, C.-S. Choi, and H. Ogawa, “70-GHz-band OFDM transceivers based on self-Heterodyne scheme for millimeter-wave wireless personal area network,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3664-3674, Oct. 2006.
[62] J. Mikkonen, C. Corrado, C. Evci, and M. Progler, “Emerging wireless broadband networks,” IEEE Communications Magazine, vol. 36, no. 2, pp.112-117, Feb. 1998.
[63] R. C. Liu, H. Y. Chang, C. H. Wang, and H. Wang, “A 63GHz VCO using a standard 0.25-μm CMOS process,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2004, pp. 446-447.
[64] M. D. Tsai, H. Wang, J. F. Kuan, and C. S. Chang, “A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 402-403.
[65] C.-M. Lo, C.-S. Lin, and H. Wang, “A miniature V-band 3-stage cascode LNA in 0.13  m CMOS," in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 1254-1263.
[66] W. C. Chen, S. Y. Chen, J. H. Tsai, T. W. Huang, and H. Wang, “A 38-48-GHz Miniature MMIC Subharmonic Mixer,” in Proc. Gallium Arsenide Applications Symp. (GAAS 2005), Oct., 2005, pp. 437-440.
[67] M. D. Vincentis, and T. Itoh, “A 40 GHz communication link with IF-assisted self-heterodyne direct down conversion,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 91-94.
[68] Y. Shoji, K. Hamaguchi, and H. Ogawa, “Millimeter-Wave Remote Self-Heterodyne System for Extremely Stable and Low-Cost Broad-Band Signal Transmission,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 6, pp. 1458-1468,
Jun. 2002
[69] K. Maruhashi, K. Ohata, H. Shimaki, Y. Shoji, and H. Ogawa, “Small-size 72-GHz-band transceiver modules utilizing IF self-heterodyne transmission technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1045-1048.
[70] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25-27, Jan., 2006.
[71] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G.J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for
gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006
[72] F.L. Di Alessio, and A. D’Orazio, “Sub-harmonically pumped direct vector modulator,” IEEE Electronics Lett., vol. 39, no. a, pp. 70-71, Jan, 2003.
[73] R. Svitek, D. Johnson, and S. Raman, “An active SiGe sub-harmonic direct-conversion receiver front-end design for 5-6 GHz band applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 505-508.
[74] L. Sheng, J. C. Jensen, and L. E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337 Sep. 2000.
[75] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid State Circuits, vol. 38, no. 10, pp.1762-1766, Oct., 2003.
[76] K-J. Koh, M.-Y. Park, C.-S. Kim, and H.-K. Yu, “Subharmonically pumped CMOS frequency conversion (up and own) circuits for 2-GHz WCDMA direct-conversion transceiver,” IEEE J. Solid State Circuits, vol. 39, no. 6,
pp.871-884, June, 2004.
[77] L. A. MacEachern and T. Manku, “A charge-injection method for Gilbert cell biasing,” in Proc. IEEE Canadian Conf. Electric Computer Eng., vol. 1, May 1998, pp. 365–368.
[78] D. M. Pozar, Microwave Engineering. New York: Wiley, 1998.
[79] A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receiver,” IEEE J. Solid State Circuits, vol.39, no. 12, pp.2259-2268, Dec., 2004.
[80] W. Chen, Theory and Design of Broadband Matching Networks. Oxford, U.K.:Pergamon, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top