|
[1] Chapter 19. phased array principles. http://www.acfr.usyd.edu. au/teaching/4th-year/mech4721-Signals/material/lecturenotes/ 19PhasedArrays.pdf. [2] Conformal array antenna technology. http://www.afrlhorizons.com/ Briefs/Feb04/SN0310.html. [3] Conjugate gradient method. http://www.math-linux.com/spip.php? article54. [4] Conjugate gradient method. http://en.wikipedia.org/wiki/Conjugate_ gradient_method. [5] Coordinated universal time. http://en.wikipedia.org/wiki/Coordinated_ Universal_Time. [6] Ellipsoid method. http://en.wikipedia.org/wiki/Ellipsoid_method. [7] fmincon. http://gemini.econ.umd.edu/jrust/econ625/fmincon.pdf. [8] Gradient descent. http://en.wikipedia.org/wiki/Gradient_descent_ method. [9] The gradient method. http://www.stanford.edu/~wfsharpe/mia/opt/mia_ opt1.htm. [10] Hessian matrix. http://en.wikipedia.org/wiki/Hessian_matrix. [11] An introduction to lagrange multipliers. http://www.slimy.com/~steuard/ teaching/tutorials/Lagrange.html. [12] An introduction to the conjugate gradient method without the agonizing pain. http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient. pdf. [13] Lagrange multiplier. http://mathworld.wolfram.com/LagrangeMultiplier. html. [14] Leap second. http://en.wikipedia.org/wiki/Leap_second. [15] Least squares. http://en.wikipedia.org/wiki/Least_squares. [16] Line-search methods. http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/ continuous/unconstrained/linesearch.html. 82 REFERENCES 83 [17] Linesearch. http://en.wikipedia.org/wiki/Line_search. [18] Logical time. http://www.vs.inf.ethz.ch/publ/papers/logtime.pdf. [19] Nelder-mead method. http://en.wikipedia.org/wiki/Nelder-Mead_ method. [20] Nelder-mead method. http://www.cse.uiuc.edu/eot/modules/ optimization/NelderMead/. [21] Newton’s method in optimization. http://en.wikipedia.org/wiki/Newton’ s_method_in_optimization. [22] Optimization (mathematics). http://en.wikipedia.org/wiki/ Optimization_(mathematics). [23] Optimization toolbox: fmincon. http://www.mathworks.com/access/ helpdesk/help/toolbox/optim/index.html?/access/helpdesk/help/ toolbox/optim/ug/fmincon.html&http://www.google.com/search?hl= zh-TW&q=Optimization+Toolbox%3A+fmincon&btnG=Google+%E6%90%9C%E5% B0%8B&lr=. [24] Penalty method. http://en.wikipedia.org/wiki/Penalty_method. [25] Phase array antennas. http://www.microwaves101.com/encyclopedia/ phasedarrays.cfm. [26] The quasi-newton method. http://www.eso.info/projects/esomidas/doc/ user/98NOV/vola/node131.html. [27] Quasi-newton method. http://en.wikipedia.org/wiki/Quasi-Newton_ methods. [28] Tables of the Normal distribution. http://www.math.unb.ca/~knight/ utility/NormTble.htm. [29] Trust region and line-search methods. http://iridia.ulb.ac.be/~fvandenb/ mythesis/node9.html. [30] Trust-region methods for nonlinear minimization. http://www.mathworks. com/access/helpdesk_r13/help/toolbox/optim/tutori2d.html. [31] Unconstrained optimization. http://www-fp.mcs.anl.gov/otc/GUIDE/ OptWeb/continuous/unconstrained/. [32] V. Abhayawardhana, I. Wassell, D. Crosby, M. Sellars, and M. Brown. Comparison of empirical propagation path loss models for fixed wireless access systems. IEEE 61st Vehicular Technology Conference, pages 73–77, June 2005. REFERENCES 84 [33] E. Anceaume and I. Puaut. A taxonomy of clock synchronization algorithms. IRISA Research Report, 1997. [34] R. Andreani, E. G. Birgin, J. M. Martinez, and M. L. Schuverdt. On augmented lagrangian methods with general lower-level constraints. http://www. optimization-online.org/DB_FILE/2005/03/1085.pdf, 2005. [35] U. M. Ascher. Chapter 10: Penalty, barrier and augmented lagrangian methods. http://www.cs.ubc.ca/~ascher/542/chap10.pdf. [36] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user location and tracking system. In INFOCOM (2), pages 775–784, 2000. [37] C. A. Balanis. Antenna Theory: Analysis and Design. Wiley-Interscience, 3 edition, 2005. [38] T. Banka, P. Lee, A. P. Jayasumana, and V. Chandrasekar. Application aware overlay one-to-many data dissemination protocol for high-bandwidth sensor actuator networks. IEEE Comsware, 2006. [39] X. Bao and J. L. (Tiffany). Decode-amplify-forward (DAF): A new class of forwarding strategy for wireless relay channels. 2005 IEEE 6th Workshop on Signal Processing Advances in Wireless Communications. [40] G. Barriac, R. Mudumbai, and U. Madhow. Distributed beamforming for information transfer in sensor networks. [41] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms. Wiley-Interscience, 3rd edition, 2006. [42] J. E. Beasley. Advances in Linear and Integer Programming. Oxford University Press, USA, 1996. [43] N. C. Beaulieu and J. Hu. A noise reduction amplify-and-forward relay protocol for distributed spatial diversity. IEEE Communications Letters, (11), November 2006. [44] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999. [45] C. Bettstetter, C. Hartmann, and C. Moser. How Does Randomized Beamforming Improve the Connectivity of Ad Hoc Networks? IEEE ICC, 2005. [46] A. Carzaniga and A. Wolf. Content-based networking: A new communication infrastructure, 2001. [47] W. Chen, D. Wang, and W. Wang. Beamforming for information transfer in wireless sensor networks without perfect positioning. [48] R. E. Collin and F. J. Zucker. Antenna theory. McGraw-Hill, 1969. REFERENCES 85 [49] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. Society for Industrial Mathematics, 1987. [50] M. Cord and D. Declercq. Three-dimensional building detection and modeling using a statistical approach. IEEE Transactions on Image Processing, (5):715– 723, May 2001. [51] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts and Design. Addison-Wesley, 3 edition, 2001. [52] T. Cover and A. E. Gamal. Capacity theorems for the relay chanel. IEEE Transactions on Information Theory, (5):572–584, Sept 1979. [53] J. A. Dabin, A. M. H. Nan Ni, E. Niver, and H. Grebel. The effects of antenna directivity on path loss and multipath propagation in uwb indoor wireless channels. IEEE Conference on Ultra Wideband Systems and Technologies, pages 305–309, November 2003. [54] H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization service for wireless sensor networks. ACM SIGMOBILE Mobile Computing and Communications, (1):125–139, 2004. [55] Y. Ding, J.-K. Zhang, and K. M. Wong. The amplify-and-forward half-duplex cooperative system: Pairwise error probability and precoder design. IEEE Transactions on Signal Processing, (2), February 2007. [56] L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex position estimation in wireless sensor networks. April 2001. [57] H. B. Dwight. Tables of Integrals and Other Mathematical Data. Prentice Hall, 4th edition, 1961. [58] E. Elnahrawy, X. Li, and R. P. Martin. The Limits of Localization using Signal Strength: A Comparative Study. [59] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference broadcasts. 2002. [60] T. E. Felber. The many faces of publish/subscribe. [61] F. H. Fitzek and M. D. Katz. Cooperation in Wireless Networks: Principles and Applications. Springer, 2006. [62] R. Freund and C. Roos. The Ellipsoid method. http://www.isa.ewi.tudelft. nl/~roos/courses/wi485/ellips.pdf, 2004. [63] R. M. Freund. Penalty and barrier methods for constrained optimization. http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/ 15-084JSpring2004/A8E10BC8-6B04-4D64-94F2-FB697408B1FF/0/lec10_ penalty_mt.pdf, 2004. REFERENCES 86 [64] A. Goldsmith. Wireless Communications. Cambridge University Press, 2005. [65] J. Greunen and J. Rabaey. Lightweight time synchronization for sensor networks, 2003. [66] F. Gross. Smart Antennas for Wireless Communications. McGraw-Hill Professional, 2005. [67] P. Hajela. Nongradient methods in multidisciplinary design optimization x status and potential. Journal of Aircraft, (1):255–265, 1999. [68] J. Han, X. Hu, and J. Liu. A unified approach to the feasible point method type for nonlinear programming with linear constraints under degeneracy and the convergence properties. Annals of Operations Research, (1):113–144, October 1990. [69] V. Handziski, A. K‥opke, H. Karl, C. Frank, and W. Drytkiewicz. Improving the Energy Efficiency of Directed Diffusion using Passive Clustering. In EWSN, volume 2920 of LNCS, 2004. [70] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-free localization schemes in large scale sensor networks, 2003. [71] J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms to application requirements, 2003. [72] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan. Building efficient wireless sensor networks with low-level naming. In Symposium on Operating Systems Principles, pages 146–159, 2001. [73] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dissemination in wireless sensor networks, 1999. [74] H. Hu, Y. Zhang, and J. Luo. Distributed Antenna Systems: Open Architecture for Future Wireless Communications. Auerbach, 2007. [75] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for network programming at scale. ACM SenSys, 2004. [76] T. E. Hunter and A. Nosratinia. Diversity through coded cooperation. IEEE Transactions on Wireless Communications, (2), February 2006. [77] T. E. Hunter, S. Sanayei, and A. Nosratinia. Outage analysis of coded cooperation. IEEE Transactions on Information Theory, (2), February 2006. [78] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed diffusion for wireless sensor networking, 2003. REFERENCES 87 [79] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia. Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Transactions on Signal Processing, (2), February 2004. [80] W. Jiang, Y. Guo, T. Liu, W. Shen, and W. Cao. Comparison of random phasing methods for reducing beam pointing errors in phased array. IEEE Transactions on Antennas and Propagation, (4), April 2005. [81] L. Josefsson. Conformal array antennas on curved surfaces. [82] J. C. L. Jr. and T. S. Rappaport. Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. Prentice Hall, 1999. [83] J.Zhou, D.R.Xiao, S.Sasaki, HlKikuchi, and H.Luo. Analysis of circular antenna arrays with mrc in nakagami fading channels by approximate approaches. August 2005. [84] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks. John Wiley and Sons, 2005. [85] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks. John Wiley and Sons, 2005. [86] W. Kim, J. G. Lee, and G.-I. Jee. The interior-point method for an optimal treatment of bias in trilateration location. IEEE Transactions on Vehicular Technology, (4):1291–1301, July 2006. [87] G. Kramer, M. Gastpar, and P. Gupta. Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, Sept. 2005. [88] L. Lamport. Time, clocks and the ordering of events in a distributed system. Communications of the ACM, (7):558–565, 1978. [89] Z. R. Lazic. Design of Experiments in Chemical Engineering: A Practical Guide. Wiley-VCH, 2005. [90] J.-H. Lee and C.-C. Wang. Adaptive array beamforming with robust capabilities under random sensor position errors. IEE Proc.-Radar Sonar Navig., (6), December 2005. [91] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang. Localized delaunay triangulation with application in ad hoc wireless networks. IEEE Transactions on Parallel Distributed Systems, (10), October 2003. [92] Y. Li. Application of augmented lagrangian method in independent component analysis. http://www.csee.umbc.edu/~liyiou1/YLiGRC04.pdf. REFERENCES 88 [93] J. Luo, R. S. Blum, L. J. Cimini, L. J. Greenstein, and A. M. Haimovich. Decode-and-forward cooperative diversity with power allocation in wireless networks. IEEE Transactions on Wireless Communications, (3), March 2007. [94] R. J. Mailloux. Phased Array Antenna Handbook. Artech House Publishers, 2nd edition, 2005. [95] M. Manzo, T. Roosta, and S. Sastry. Time synchronization attacks in sensor networks. 2005. [96] C. Mauro, G. Mariagrazia, and I. Luigi. Heteroscedastic bayesian point source model for spatial data. 2004. [97] B. S. Mergen, M. Anna Scaglione, and G. Mergen. Asymptotic analysis of multi-stage cooperative broadcast in wireless networks. Joint Special Issue of the IEEE Transactions on Information Theory and IEEE/ACM Transactions on Networking, June 2006. [98] S. A. Mitchell. Refining a triangulation of a planar straight-line graph to eliminate large angles. November 1993. [99] D. Niculescu and B. Nath. Ad hoc positioning system (aps), 2001. [100] H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh. Collaborative beamforming in ad hoc networks. 2004. [101] H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh. Collaborative beamforming for distributed wireless ad hoc sensor networks. 2005. [102] H. Ochiai, P. Mitran, V. Tarokh, and H. V. Poor. On the effects of phase estimation errors on collaborative beamforming in wireless ad hoc networks. ICASSP, 2005. [103] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless networks. In INFOCOM (3), pages 1405–1413, 1997. [104] T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice Hall PTR, 2nd edition, 2001. [105] L. A. Rondinelli. Effects of random errors on the performance of antenna arrays of many elements. IRE International Convention Record, March 1959. [106] A. Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006. [107] N. Sadagopan, B. Krishnamachari, and A. Helmy. Active query forwarding in sensor networks, 2003. [108] B. Schein. Distributed coordination in network information theory. August 2001. REFERENCES 89 [109] B. Schein and R. G. Gallager. The gaussian parallel relay network. June 2000. [110] R. Schoenberg. Optimization with the quasi-newton method. http://www. aptech.com/papers/qnewton.pdf. [111] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from mere connectivity, 2003. [112] F. Sivrikaya and B. Yener. Time synchronization in sensor networks: A survey. IEEE Network Magazine, (4):45–50, 2004. [113] O. Sjahputera, J. M. Keller, and P. Matsakis. Scene matching by spatial relationships. July 2003. [114] L. E. Spence, A. J. Insel, and S. H. Friedberg. Elementary Linear Algebra: A Matrix Approach. Prentice Hall, 1999. [115] H. Staras and S. N. Honickman. The accuracy of vehicle location by trilateration in a dense urban environment. IEEE Transactions on Vehicular Technology, pages 38–43, February 1972. [116] B. D. Steinberg. Principles of Aperture and Array System Design: including random and adaptive arrays. John Wiley and Sons, 1976. [117] S. Tan, W. Jiang, and Y. C. Guo. Poinging accuracy of planar array antennas with random quantized phased errors. Microwave Millimeter Wave Conference, 1999. [118] V. Tarokh, H. Jafarkhani, and A. Calderbank. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, pages 1456– 1467, July 1999. [119] T. Terlaky. Interior Point Methods of Mathematical Programming. Springer, 1 edition, 1996. [120] G. B. Thomas, M. D. Weir, J. D. Hass, and F. R. Giordano. Thomas’ Calculus. Addison Wesley, 11 edition, 2004. [121] S. Thrun. Bayesian landmark learning for mobile robot localization. Machine Learning, 33(1):41–76, 1998. [122] M. Tummala, C. C. Wai, and P. Vincent. Distributed beamforming in wireless sensor networks. [123] E. C. van der Meulen. Transmission of information in a t-terminal discrete memoryless channel. 1968. [124] R. Vilzmann, C. Bettstetter, and C. Hartmann. Beammac: A new paradigm for medium access in wireless networks. Electronics and Communications, 2005. REFERENCES 90 [125] R. Vilzmann, C. Bettstetter, D. Medina, and C. Hartmann. Hop Distances and Flooding in Wireless Multihop Networks with Randomized Beamforming. 2005. [126] N. Vlassis and B. J. A. Kr‥ose. Robot environment modeling via principal component regression. In Proc. IROS’99, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 677–682, 1999. [127] H. S. C. Wang. Performance of phased array antennas under error conditions. 1988. [128] J. Wang, C. Huang, J. Zhou, and H. Kikuchi. The impact of aoa energy distribution on the spatial fading correlation and ser performance of a circular antenna array. April 2006. [129] H. L. Xuan and S. Lee. A coordination-based data dissemination protocol for wireless sensor networks. ISSNIP, 2004. [130] S. Yang and J.-C. Belfiore. On slotted amplify-and-forward cooperative diversity schemes. [131] Y.-B. Yang and H. T. Tsui. Mobile robot localization by geometric hashing and model-based scene matching. August 1996. [132] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for large-scale wireless sensor networks. In ACM/IEEE Mobicom 2002, 2002. [133] F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient broadcast: A robust data delivery protocol for large scale sensor networks. [134] Z. Yi and I.-M. Kim. Decode-and-forward cooperative networks with multiuser diversity. October 2006. [135] Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks, 2001. [136] H. Zhou and S. Singh. Content based multicast (cbm) in ad hoc networks. [137] Z. Zivkovic, A. Schoute, and F. van der Heijden. Combining a priori knowledge and sensor information for updating the global position of an autonomous vehicle. Machine Learning, June 2002.
|