跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭冠麟
研究生(外文):Kuan-Lin Kuo
論文名稱:無線網路通訊協定對合作式波束成型技術之影響分析與改善
論文名稱(外文):Analyzing and Addressing the Impact of Network Protocols on Collaborative Beamforming in Wireless Networks
指導教授:謝宏昀
指導教授(外文):Hung-Yun Hsieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:90
中文關鍵詞:合作式波束成型協定失真
外文關鍵詞:collaborative beamformingprotocol artifacts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
合作式波束成型是一種重要的合作式通訊技術,它可以協同許多散佈節點,直接傳送信號到單一節點無法送到的位置。欲實施合作式波束成型需要許多網路通訊協定的配合,包含:定位協定、資料散佈協定、時間同步協定等。其中定位協定的作用是獲取節點之間的相對位置,並藉由資料散佈協定讓許多節點擁有同一份信號,最後利用時間同步協定讓散佈的節點在同一時間傳送信號。然而這些通訊協定常受限於複雜度或環境而帶來一些誤差,例如時間及位置的誤差,有些節點收不到信號等協定失真。目前合作式波束成型的文獻雖偶有針對協定失真的討論與分析他們的影響,但沒有統一的數學模型出現,也沒有看到相關文獻針對協定失真所造成的系統效能降低做出補償的動作。本論文使用一個統一數學模型同時分析這三種網路通訊協定失真對合作式波束成型系統效能的影響,包含增益減少、指向偏差、波束寬度變化等。我們發現在目前常見的頻段,以定位失真影響最大。此外藉由適當部署節點位置,或利用通訊協定來選擇參與合作式波束成型節點,我們能夠有效避免因為協定失真所帶來的影響。希望藉由本論文的分析,可以提供相關研究針對協定失真造成的系統效能影響做進一步改善。
Collaborative beamforming is an important methodology in the field of cooperative communications. One node cannot transmit message to far distances, but collaborative beamforming can coordinate distributed nodes to transmit signals to achieve
this goal. To conduct collaborative beamforming, several protocols must be executed, including localization protocol, data dissemination protocol, and time synchronization protocol. The purpose of localization protocol is to acquire relative distances between nodes, and we take the advantage of data dissemination protocol to share message with all nodes. At last, time synchronization protocol is conducted to force nodes to transmit signals at presumed time. However, these protocols are often limited to their complexities or the environment and some “protocol artifacts” appear,
such as the time synchronization error, the location error, and message vanishment. Although related work about collaborative beamforming has tried to analyze and discuss
the impact of protocol artifacts, there is no unified math framework. There is no literature to compensate the system degradation due to artifacts, either. This thesis introduces a unified math framework to analyze the influence of protocol
artifacts, including mainbeam degradation, beam pointing error, and half-power beamwidth augmentation. We discover that the artifact of localization protocol influences
the system performance the most in general frequency bands. By suitable arrangement or protocol selection of nodes, we can avoid the impact of protocol artifacts effectively. We hope by analyzing and addressing the protocol artifacts, prospective system designers can have a better understanding on collaborative beamforming.
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . v
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . vi
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND . . . . . . . . . . . . . . . . . . . 4
2.1 Cooperative Communications . . . . . . . . . . . . . . 4
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Diversity Techniques . . . . . . . . . . . . . . . . 5
2.2 Beamforming Techniques . . . . . . . . . . . . . . . . 8
2.2.1 Beamforming in MIMO Systems . . . . . . . . . . . . 8
2.2.2 Collaborative Beamforming . . . . . . . . . . . . . . 9
2.3 Protocol Artifacts . . . . . . . . . . . . . . . . . . 10
2.3.1 Classification of Protocol Artifacts . . . . . . . . 10
2.3.2 Protocol Case Studies . . . . . . . . . . . . . . . 12
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . 19
CHAPTER 3 ANALYSIS FOR GRID TOPOLOGY . . . . . . . . . 21
3.1 Ideal Power Pattern . . . . . . . . . . . . . . . . . 21
3.2 Assumptions on Protocol Artifacts . . . . . . . . . . 23
3.3 Average Power Pattern with Protocol Artifacts . . . . 25
3.4 Performance Degradation due to Artifacts . . . . . . . 29
3.4.1 Preliminary . . . . . . . . . . . . . . . . . . . . 29
3.4.2 Mainbeam Degradation . . . . . . . . . . . . . . . . 30
3.4.3 Directivity Reduction . . . . . . . . . . . . . . . 33
3.4.4 Beam Pointing Error . . . . . . . . . . . . . . . . 35
3.4.5 Half-Power Beamwidth Augmentation . . . . . . . . . 40

CHAPTER 4 ANALYSIS FOR ARBITRARY TOPOLOGY . . . . 42
4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . 42
4.2 Transforming Arbitrary Topology to Grid . . . . . . . 43
4.2.1 Ideal Power Pattern . . . . . . . . . . . . . . . . 43
4.2.2 Average Power Pattern with Protocol Artifacts . . . 44
4.2.3 Mainbeam Degradation . . . . . . . . . . . . . . . 47
4.2.4 Directivity Reduction . . . . . . . . . . . . . . . 48
4.2.5 Beam Pointing Error . . . . . . . . . . . . . . . . 50
4.2.6 Half-Power Beamwidth Augmentation . . . . . . . . . 52
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . 53
CHAPTER 5 ADDRESSING PROTOCOL ARTIFACTS . . . . . . 55
5.1 Adjusting Operating Frequencies . . . . . . . . . . . 55
5.2 Physical Deployment . . . . . . . . . . . . . . . . . 56
5.2.1 Finding Larger Peak Value . . . . . . . . . . . . . 56
5.2.2 Compensation for Protocol Artifacts . . . . . . . . 64
5.3 Protocol Selection . . . . . . . . . . . . . . . . . 71
5.3.1 Choosing Optimal Grid Topologies . . . . . . . . . 71
CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . . 81
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . 82
[1] Chapter 19. phased array principles. http://www.acfr.usyd.edu.
au/teaching/4th-year/mech4721-Signals/material/lecturenotes/
19PhasedArrays.pdf.
[2] Conformal array antenna technology. http://www.afrlhorizons.com/
Briefs/Feb04/SN0310.html.
[3] Conjugate gradient method. http://www.math-linux.com/spip.php?
article54.
[4] Conjugate gradient method. http://en.wikipedia.org/wiki/Conjugate_
gradient_method.
[5] Coordinated universal time. http://en.wikipedia.org/wiki/Coordinated_
Universal_Time.
[6] Ellipsoid method. http://en.wikipedia.org/wiki/Ellipsoid_method.
[7] fmincon. http://gemini.econ.umd.edu/jrust/econ625/fmincon.pdf.
[8] Gradient descent. http://en.wikipedia.org/wiki/Gradient_descent_
method.
[9] The gradient method. http://www.stanford.edu/~wfsharpe/mia/opt/mia_
opt1.htm.
[10] Hessian matrix. http://en.wikipedia.org/wiki/Hessian_matrix.
[11] An introduction to lagrange multipliers. http://www.slimy.com/~steuard/
teaching/tutorials/Lagrange.html.
[12] An introduction to the conjugate gradient method without the agonizing pain.
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.
pdf.
[13] Lagrange multiplier. http://mathworld.wolfram.com/LagrangeMultiplier.
html.
[14] Leap second. http://en.wikipedia.org/wiki/Leap_second.
[15] Least squares. http://en.wikipedia.org/wiki/Least_squares.
[16] Line-search methods. http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/
continuous/unconstrained/linesearch.html.
82
REFERENCES 83
[17] Linesearch. http://en.wikipedia.org/wiki/Line_search.
[18] Logical time. http://www.vs.inf.ethz.ch/publ/papers/logtime.pdf.
[19] Nelder-mead method. http://en.wikipedia.org/wiki/Nelder-Mead_
method.
[20] Nelder-mead method. http://www.cse.uiuc.edu/eot/modules/
optimization/NelderMead/.
[21] Newton’s method in optimization. http://en.wikipedia.org/wiki/Newton’
s_method_in_optimization.
[22] Optimization (mathematics). http://en.wikipedia.org/wiki/
Optimization_(mathematics).
[23] Optimization toolbox: fmincon. http://www.mathworks.com/access/
helpdesk/help/toolbox/optim/index.html?/access/helpdesk/help/
toolbox/optim/ug/fmincon.html&http://www.google.com/search?hl=
zh-TW&q=Optimization+Toolbox%3A+fmincon&btnG=Google+%E6%90%9C%E5%
B0%8B&lr=.
[24] Penalty method. http://en.wikipedia.org/wiki/Penalty_method.
[25] Phase array antennas. http://www.microwaves101.com/encyclopedia/
phasedarrays.cfm.
[26] The quasi-newton method. http://www.eso.info/projects/esomidas/doc/
user/98NOV/vola/node131.html.
[27] Quasi-newton method. http://en.wikipedia.org/wiki/Quasi-Newton_
methods.
[28] Tables of the Normal distribution. http://www.math.unb.ca/~knight/
utility/NormTble.htm.
[29] Trust region and line-search methods. http://iridia.ulb.ac.be/~fvandenb/
mythesis/node9.html.
[30] Trust-region methods for nonlinear minimization. http://www.mathworks.
com/access/helpdesk_r13/help/toolbox/optim/tutori2d.html.
[31] Unconstrained optimization. http://www-fp.mcs.anl.gov/otc/GUIDE/
OptWeb/continuous/unconstrained/.
[32] V. Abhayawardhana, I. Wassell, D. Crosby, M. Sellars, and M. Brown. Comparison
of empirical propagation path loss models for fixed wireless access systems.
IEEE 61st Vehicular Technology Conference, pages 73–77, June 2005.
REFERENCES 84
[33] E. Anceaume and I. Puaut. A taxonomy of clock synchronization algorithms.
IRISA Research Report, 1997.
[34] R. Andreani, E. G. Birgin, J. M. Martinez, and M. L. Schuverdt. On augmented
lagrangian methods with general lower-level constraints. http://www.
optimization-online.org/DB_FILE/2005/03/1085.pdf, 2005.
[35] U. M. Ascher. Chapter 10: Penalty, barrier and augmented lagrangian methods.
http://www.cs.ubc.ca/~ascher/542/chap10.pdf.
[36] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user
location and tracking system. In INFOCOM (2), pages 775–784, 2000.
[37] C. A. Balanis. Antenna Theory: Analysis and Design. Wiley-Interscience, 3
edition, 2005.
[38] T. Banka, P. Lee, A. P. Jayasumana, and V. Chandrasekar. Application aware
overlay one-to-many data dissemination protocol for high-bandwidth sensor actuator
networks. IEEE Comsware, 2006.
[39] X. Bao and J. L. (Tiffany). Decode-amplify-forward (DAF): A new class of
forwarding strategy for wireless relay channels. 2005 IEEE 6th Workshop on
Signal Processing Advances in Wireless Communications.
[40] G. Barriac, R. Mudumbai, and U. Madhow. Distributed beamforming for information
transfer in sensor networks.
[41] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming:
Theory and Algorithms. Wiley-Interscience, 3rd edition, 2006.
[42] J. E. Beasley. Advances in Linear and Integer Programming. Oxford University
Press, USA, 1996.
[43] N. C. Beaulieu and J. Hu. A noise reduction amplify-and-forward relay protocol
for distributed spatial diversity. IEEE Communications Letters, (11), November
2006.
[44] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 1999.
[45] C. Bettstetter, C. Hartmann, and C. Moser. How Does Randomized Beamforming
Improve the Connectivity of Ad Hoc Networks? IEEE ICC, 2005.
[46] A. Carzaniga and A. Wolf. Content-based networking: A new communication
infrastructure, 2001.
[47] W. Chen, D. Wang, and W. Wang. Beamforming for information transfer in
wireless sensor networks without perfect positioning.
[48] R. E. Collin and F. J. Zucker. Antenna theory. McGraw-Hill, 1969.
REFERENCES 85
[49] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. Society
for Industrial Mathematics, 1987.
[50] M. Cord and D. Declercq. Three-dimensional building detection and modeling
using a statistical approach. IEEE Transactions on Image Processing, (5):715–
723, May 2001.
[51] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts
and Design. Addison-Wesley, 3 edition, 2001.
[52] T. Cover and A. E. Gamal. Capacity theorems for the relay chanel. IEEE
Transactions on Information Theory, (5):572–584, Sept 1979.
[53] J. A. Dabin, A. M. H. Nan Ni, E. Niver, and H. Grebel. The effects of antenna
directivity on path loss and multipath propagation in uwb indoor wireless channels.
IEEE Conference on Ultra Wideband Systems and Technologies, pages
305–309, November 2003.
[54] H. Dai and R. Han. Tsync: A lightweight bidirectional time synchronization
service for wireless sensor networks. ACM SIGMOBILE Mobile Computing and
Communications, (1):125–139, 2004.
[55] Y. Ding, J.-K. Zhang, and K. M. Wong. The amplify-and-forward half-duplex
cooperative system: Pairwise error probability and precoder design. IEEE
Transactions on Signal Processing, (2), February 2007.
[56] L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex position estimation in
wireless sensor networks. April 2001.
[57] H. B. Dwight. Tables of Integrals and Other Mathematical Data. Prentice Hall,
4th edition, 1961.
[58] E. Elnahrawy, X. Li, and R. P. Martin. The Limits of Localization using Signal
Strength: A Comparative Study.
[59] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. 2002.
[60] T. E. Felber. The many faces of publish/subscribe.
[61] F. H. Fitzek and M. D. Katz. Cooperation in Wireless Networks: Principles
and Applications. Springer, 2006.
[62] R. Freund and C. Roos. The Ellipsoid method. http://www.isa.ewi.tudelft.
nl/~roos/courses/wi485/ellips.pdf, 2004.
[63] R. M. Freund. Penalty and barrier methods for constrained optimization.
http://ocw.mit.edu/NR/rdonlyres/Sloan-School-of-Management/
15-084JSpring2004/A8E10BC8-6B04-4D64-94F2-FB697408B1FF/0/lec10_
penalty_mt.pdf, 2004.
REFERENCES 86
[64] A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.
[65] J. Greunen and J. Rabaey. Lightweight time synchronization for sensor networks,
2003.
[66] F. Gross. Smart Antennas for Wireless Communications. McGraw-Hill Professional,
2005.
[67] P. Hajela. Nongradient methods in multidisciplinary design optimization x
status and potential. Journal of Aircraft, (1):255–265, 1999.
[68] J. Han, X. Hu, and J. Liu. A unified approach to the feasible point method type
for nonlinear programming with linear constraints under degeneracy and the
convergence properties. Annals of Operations Research, (1):113–144, October
1990.
[69] V. Handziski, A. K‥opke, H. Karl, C. Frank, and W. Drytkiewicz. Improving
the Energy Efficiency of Directed Diffusion using Passive Clustering. In EWSN,
volume 2920 of LNCS, 2004.
[70] T. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher. Range-free localization
schemes in large scale sensor networks, 2003.
[71] J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms
to application requirements, 2003.
[72] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan. Building efficient wireless sensor networks with low-level naming.
In Symposium on Operating Systems Principles, pages 146–159, 2001.
[73] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information
dissemination in wireless sensor networks, 1999.
[74] H. Hu, Y. Zhang, and J. Luo. Distributed Antenna Systems: Open Architecture
for Future Wireless Communications. Auerbach, 2007.
[75] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol
for network programming at scale. ACM SenSys, 2004.
[76] T. E. Hunter and A. Nosratinia. Diversity through coded cooperation. IEEE
Transactions on Wireless Communications, (2), February 2006.
[77] T. E. Hunter, S. Sanayei, and A. Nosratinia. Outage analysis of coded cooperation.
IEEE Transactions on Information Theory, (2), February 2006.
[78] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed
diffusion for wireless sensor networking, 2003.
REFERENCES 87
[79] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia. Coded cooperation
in wireless communications: Space-time transmission and iterative decoding.
IEEE Transactions on Signal Processing, (2), February 2004.
[80] W. Jiang, Y. Guo, T. Liu, W. Shen, and W. Cao. Comparison of random
phasing methods for reducing beam pointing errors in phased array. IEEE
Transactions on Antennas and Propagation, (4), April 2005.
[81] L. Josefsson. Conformal array antennas on curved surfaces.
[82] J. C. L. Jr. and T. S. Rappaport. Smart Antennas for Wireless Communications:
IS-95 and Third Generation CDMA Applications. Prentice Hall, 1999.
[83] J.Zhou, D.R.Xiao, S.Sasaki, HlKikuchi, and H.Luo. Analysis of circular antenna
arrays with mrc in nakagami fading channels by approximate approaches. August
2005.
[84] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks.
John Wiley and Sons, 2005.
[85] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks.
John Wiley and Sons, 2005.
[86] W. Kim, J. G. Lee, and G.-I. Jee. The interior-point method for an optimal
treatment of bias in trilateration location. IEEE Transactions on Vehicular
Technology, (4):1291–1301, July 2006.
[87] G. Kramer, M. Gastpar, and P. Gupta. Cooperative strategies and capacity
theorems for relay networks. IEEE Transactions on Information Theory, Sept.
2005.
[88] L. Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, (7):558–565, 1978.
[89] Z. R. Lazic. Design of Experiments in Chemical Engineering: A Practical Guide.
Wiley-VCH, 2005.
[90] J.-H. Lee and C.-C. Wang. Adaptive array beamforming with robust capabilities
under random sensor position errors. IEE Proc.-Radar Sonar Navig., (6),
December 2005.
[91] X.-Y. Li, G. Calinescu, P.-J. Wan, and Y. Wang. Localized delaunay triangulation
with application in ad hoc wireless networks. IEEE Transactions on
Parallel Distributed Systems, (10), October 2003.
[92] Y. Li. Application of augmented lagrangian method in independent component
analysis. http://www.csee.umbc.edu/~liyiou1/YLiGRC04.pdf.
REFERENCES 88
[93] J. Luo, R. S. Blum, L. J. Cimini, L. J. Greenstein, and A. M. Haimovich.
Decode-and-forward cooperative diversity with power allocation in wireless networks.
IEEE Transactions on Wireless Communications, (3), March 2007.
[94] R. J. Mailloux. Phased Array Antenna Handbook. Artech House Publishers,
2nd edition, 2005.
[95] M. Manzo, T. Roosta, and S. Sastry. Time synchronization attacks in sensor
networks. 2005.
[96] C. Mauro, G. Mariagrazia, and I. Luigi. Heteroscedastic bayesian point source
model for spatial data. 2004.
[97] B. S. Mergen, M. Anna Scaglione, and G. Mergen. Asymptotic analysis of
multi-stage cooperative broadcast in wireless networks. Joint Special Issue of
the IEEE Transactions on Information Theory and IEEE/ACM Transactions
on Networking, June 2006.
[98] S. A. Mitchell. Refining a triangulation of a planar straight-line graph to eliminate
large angles. November 1993.
[99] D. Niculescu and B. Nath. Ad hoc positioning system (aps), 2001.
[100] H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh. Collaborative beamforming
in ad hoc networks. 2004.
[101] H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh. Collaborative beamforming
for distributed wireless ad hoc sensor networks. 2005.
[102] H. Ochiai, P. Mitran, V. Tarokh, and H. V. Poor. On the effects of phase
estimation errors on collaborative beamforming in wireless ad hoc networks.
ICASSP, 2005.
[103] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks. In INFOCOM (3), pages 1405–1413, 1997.
[104] T. S. Rappaport. Wireless Communications: Principles and Practice. Prentice
Hall PTR, 2nd edition, 2001.
[105] L. A. Rondinelli. Effects of random errors on the performance of antenna arrays
of many elements. IRE International Convention Record, March 1959.
[106] A. Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006.
[107] N. Sadagopan, B. Krishnamachari, and A. Helmy. Active query forwarding in
sensor networks, 2003.
[108] B. Schein. Distributed coordination in network information theory. August
2001.
REFERENCES 89
[109] B. Schein and R. G. Gallager. The gaussian parallel relay network. June 2000.
[110] R. Schoenberg. Optimization with the quasi-newton method. http://www.
aptech.com/papers/qnewton.pdf.
[111] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz. Localization from mere
connectivity, 2003.
[112] F. Sivrikaya and B. Yener. Time synchronization in sensor networks: A survey.
IEEE Network Magazine, (4):45–50, 2004.
[113] O. Sjahputera, J. M. Keller, and P. Matsakis. Scene matching by spatial relationships.
July 2003.
[114] L. E. Spence, A. J. Insel, and S. H. Friedberg. Elementary Linear Algebra: A
Matrix Approach. Prentice Hall, 1999.
[115] H. Staras and S. N. Honickman. The accuracy of vehicle location by trilateration
in a dense urban environment. IEEE Transactions on Vehicular Technology,
pages 38–43, February 1972.
[116] B. D. Steinberg. Principles of Aperture and Array System Design: including
random and adaptive arrays. John Wiley and Sons, 1976.
[117] S. Tan, W. Jiang, and Y. C. Guo. Poinging accuracy of planar array antennas
with random quantized phased errors. Microwave Millimeter Wave Conference,
1999.
[118] V. Tarokh, H. Jafarkhani, and A. Calderbank. Space-time block codes from
orthogonal designs. IEEE Transactions on Information Theory, pages 1456–
1467, July 1999.
[119] T. Terlaky. Interior Point Methods of Mathematical Programming. Springer, 1
edition, 1996.
[120] G. B. Thomas, M. D. Weir, J. D. Hass, and F. R. Giordano. Thomas’ Calculus.
Addison Wesley, 11 edition, 2004.
[121] S. Thrun. Bayesian landmark learning for mobile robot localization. Machine
Learning, 33(1):41–76, 1998.
[122] M. Tummala, C. C. Wai, and P. Vincent. Distributed beamforming in wireless
sensor networks.
[123] E. C. van der Meulen. Transmission of information in a t-terminal discrete
memoryless channel. 1968.
[124] R. Vilzmann, C. Bettstetter, and C. Hartmann. Beammac: A new paradigm for
medium access in wireless networks. Electronics and Communications, 2005.
REFERENCES 90
[125] R. Vilzmann, C. Bettstetter, D. Medina, and C. Hartmann. Hop Distances and
Flooding in Wireless Multihop Networks with Randomized Beamforming. 2005.
[126] N. Vlassis and B. J. A. Kr‥ose. Robot environment modeling via principal
component regression. In Proc. IROS’99, IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 677–682, 1999.
[127] H. S. C. Wang. Performance of phased array antennas under error conditions.
1988.
[128] J. Wang, C. Huang, J. Zhou, and H. Kikuchi. The impact of aoa energy distribution
on the spatial fading correlation and ser performance of a circular
antenna array. April 2006.
[129] H. L. Xuan and S. Lee. A coordination-based data dissemination protocol for
wireless sensor networks. ISSNIP, 2004.
[130] S. Yang and J.-C. Belfiore. On slotted amplify-and-forward cooperative diversity
schemes.
[131] Y.-B. Yang and H. T. Tsui. Mobile robot localization by geometric hashing and
model-based scene matching. August 1996.
[132] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination
model for large-scale wireless sensor networks. In ACM/IEEE Mobicom 2002,
2002.
[133] F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient broadcast: A robust data
delivery protocol for large scale sensor networks.
[134] Z. Yi and I.-M. Kim. Decode-and-forward cooperative networks with multiuser
diversity. October 2006.
[135] Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks, 2001.
[136] H. Zhou and S. Singh. Content based multicast (cbm) in ad hoc networks.
[137] Z. Zivkovic, A. Schoute, and F. van der Heijden. Combining a priori knowledge
and sensor information for updating the global position of an autonomous
vehicle. Machine Learning, June 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 1. 丁穩勝,〈物價飆漲,供料商以情事變更拒絕供料應如何因應?〉,營造天下,第105期,頁14-18,民國93年9月。
2. 4. 王伯儉,〈漏項之處理〉,營造天下,第99期,頁21-24,民國93年3月。
3. 5. 余文恭,〈論工程契約之性質及其義務群〉,月旦法學,第129期,頁19-32,民國95年2月。
4. 6. 李金松,〈異常工地狀況損失的風險分配與求償〉,營造天下,第109/110期,頁11-17,民國94年2月。
5. 7. 李金松,〈論公共工程契約報價的計算錯誤〉,營造天下,第106期,頁3-7,民國93年10月。
6. 8. 吳憲彰,〈工程合約實務問題泛論(1)--逾期完工違約金賠償〉,營造天下,第18期,頁41-46,民國86年6月。
7. 10. 林忠義,〈違約金分類標準之建立暨現行法違約金相關問題之省思--評最高法院八十三年度臺上字第二八七九號判決〉,月旦法學,第17期,頁103-110,民85年10月。
8. 11. 林明鏘,〈促進民間參與公共建設法事件法律性質之分析〉,臺灣本土法學雜誌,第82期,頁218-225,民國95年6月。
9. 12. 林誠二,〈損害賠償總額預定違約金之損害舉證問題〉,臺灣本土法學雜誌,第36期,頁169-175,民國91年7月。
10. 13. 林誠二,〈論政府採購之履約保證金--兼評最高法院九一年度臺上字第九○一號民事判決〉,臺灣本土法學雜誌,第72期,頁41-62,民國94年7月。
11. 14. 林曉瑩、黃麗蓉,〈論業主與承商之共同遲延 -上-〉,營建知訊,第268期,頁64-67,民國94年5月。
12. 15. 林曉瑩、黃麗蓉,〈論業主與承商之共同遲延 –下-〉,營建知訊,第269期,頁64-68,民國94年6月。
13. 16. 邱駿彥,〈約定服務年限與違約金之法律問題探討〉,輔仁法學,第20期,頁164-168,民國89年12月。
14. 19. 孫森焱,〈論違約金與解約金〉,法令月刊,第47卷第12期,頁3-10,民國86年12月。
15. 21. 張宏節、江苑臻,〈公共工程總價承攬契約數量差異問題研究〉,月旦法學,第103期,頁120-137,民國92年12月。