跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士程
研究生(外文):Shih-Cheng Lin
論文名稱:新式雙金屬平面帶通濾波器之設計
論文名稱(外文):Design of Novel Dual-Metal-Plane Bandpass Filters
指導教授:陳俊雄陳俊雄引用關係
指導教授(外文):Chun Hsiung Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:156
中文關鍵詞:Dual-metal-planebandpass filtercoplanar waveguidestepped-impedance resonatorspurious suppressionminiaturizedpatch-via-spiral resonatorbroadbandcomposite right/left-handed transmission line
外文關鍵詞:雙金屬平面帶通濾波器共平面波導步階性阻抗共振器贅餘頻帶抑制縮小化貼片-連通柱-螺旋共振器寬頻複合式右手/左手傳輸線
相關次數:
  • 被引用被引用:1
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的中心思想在於追求微波帶通濾波器之寬贅餘頻帶的抑制、所佔電路面積之精縮、頻率選擇度的銳利程度以及較寬的可實現頻寬。基於這些動機,本論文主要專注於三種不同之創新濾波器架構,進而使得這些嚴格的濾波器規格可實現。此研究主要在於研究使用單一基板之雙金屬平面組態,此種組態提供了另一種遠優於傳統單平面電路的實現方法並提供多種優點。適當地使用雙金屬平面組態,可以大幅的便利多種新型濾波器之設計及實作,諸如擁有寬贅餘頻帶壓制之「電容加載共軸共平面波導濾波器」、運用於擁有傳輸零點之精縮型濾波器之「貼片─連通柱─螺旋共振器」,以及擁有較寬可實現頻寬之「複合式左手╱右手傳輸線濾波器」。
起初,為了達成贅餘頻帶之壓制,基本上由四分之一波長步階阻抗共振器所組成的,使用強化型的空橋電容加載於共軸共平面波導濾波器,結合特殊設計的微帶線到共平面波導轉接的耦合架構來同時達到贅餘頻帶之壓抑以及尺寸之縮減。首先,適當地設計印製在共平面波導上方之強化型空橋以達成所需加載電容值,並選擇適當之共振器參數,以符合所提出之特殊條件,藉以抑制低階數之贅餘頻帶。接著,採用經過調整之寬邊耦合微帶線到共平面波導之轉接來同時提供所需之餽入電容並同時達成對於較高頻段之高衰減程度。這三種贅餘頻帶壓抑的機制皆被詳細的探討並由模擬與實驗佐證。此創新濾波器在四階的實現實例中可將止帶延伸至19.04倍之中心頻率。
接著,為了同時達成濾波器的尺寸精縮並提供陡峭的頻率選擇度,基於雙平面組態之「貼片─連通柱─螺旋共振器」被提出並驗證。共振器組成是用位於上平面之微帶貼片作為電容,然後經由一貫穿基板之連通柱連接到位於下平面之準集總螺旋形電感。因為此種共振器架構位於單一基板之相反側,因而能夠在印刷電路板製程中實現出非常精縮之尺寸。在實現帶通濾波器時,適當地結合所提出之共振器,可組成四種有用的耦合共振器對,這些耦合共振器對便可同時提供延著相反金屬面之電性及磁性的耦合來達成所需求之濾波器響應。適當地將共振器對間的耦合設計成同相或者是反相,一個不需要傳統交叉耦合路徑或者是輸入輸出間耦合之二階帶通濾波器可被實現成擁有柴比雪夫或者類準橢圓形函數之濾波器響應。而為了設計考量,此二階濾波器的相關等效電路亦被周詳的推導及驗證。最後,設計概念被延伸至設計四階貼片─連通柱─螺旋帶通濾波器,此高階濾波器提供絕佳的通帶選擇度,同時只佔有0.188波長乘0.043波長的精縮尺寸。
最後,為了實現擁有較寬可實現頻寬之帶通濾波器,複合式右手╱左手傳輸線濾波器也一樣在所提出之雙金屬平面組態上被實現出來,並同時採用共平面波導以及微帶線以利設計。藉由適當調整一個由可任意控制電容╱電感集總元件所組成之複合式右手╱左手單元,所需濾波器中心頻率以及比例頻寬可以很輕易地被實現出來,將數個單元串接,即可實現出帶通濾波響應。更明確地來說,相較於傳統那類基於假設狹窄頻寬之濾波器,這裡所提出的濾波器可提供相當寬頻的響應。為了展示起見,兩個雙平面濾波器被設計在不同的中心頻率並擁有不同的比例頻寬;此兩個濾波器在通道附近顯現相當良好的選擇度。此外,全波模擬與實驗量測的結果,兩者間有十分吻合的一致性。另外,研究中發現前面提出藉由串接數個複合式左手╱右手單元來達成較寬可實現頻寬之途徑,當應用於實現較窄頻寬之濾波器時,容易出現不切實際而無法實現之集總元件值,於是利用零階共振器的特性,配合電感性耦合組抗倒反器的概念,較窄頻的濾波器亦可利用所提出之雙面複合式右手╱左手單元加以實現。
Pursuit of wider rejection bandwidth, compactness of occupied circuit size, sharpness of frequency selectivity, and broader realizable passband is the controlling idea among the overall dissertation. For this reason, this dissertation principally focuses on three different filter topologies so as to make the stringent requirements possible. The central concept is making good use of dual-metal-plane configuration which provides numerous advantages superior than those of conventional uniplanar approach. In this work, the dual-metal-plane configuration ultimately facilitates the designs of inline coplanar waveguide (CPW) filters with wideband spurious suppression, patch-via-spiral resonators for the development of miniaturized filters, and composite right/left-handed filters with wide fractional-bandwidth.
In the beginning, for the sake of spurious suppression, inline CPW bandpass filters composed of quarter-wavelength stepped-impedance resonators are proposed, using loaded air-bridge enhanced capacitors and broadside-coupled microstrip-to-CPW transition structures for both wide-band spurious suppression and size miniaturization. Three effective spurious suppression mechanisms including spurious destruction, spurious cancellation, and higher order spurious attenuation are incorporated in the proposed CPW filters and thus make the filter stopband extended up to 19.04f0.
Next, to achieve the filter miniaturization and simultaneously provide sharper passband, a novel patch-via-spiral resonator based on the dual-metal-plane configuration is proposed and examined. With the microstrip patch on the top plane serving as a capacitor and linking to the quasi-lumped spiral inductor on the bottom plane through a connecting via, the proposed dual-plane resonator structure located on the opposite sides of single substrate may form a miniaturized one in the printed-circuit board fabrication. By appropriately arranging the proposed patch-via-spiral resonators, useful coupled-resonator pairs may be constructed to provide electric and magnetic couplings along top- and bottom-planes, respectively. Therefore, the two couplings existing between coupled-resonator pair can be made with the same or opposite sign and are first carefully examined in 2nd-order filters with either Chebyshev or quasi-elliptic-like response. Then, the design concept is generally extended to 4th-order filters which possess good frequency selectivity and compact sizes of 0.188λg0 × 0.043λg0, where λg0 stands for the guided wavelength at center frequency.
Finally, in order to realize the filters with wide fractional-bandwidth, composite right/left-handed bandpass filters with wide fractional bandwidth are also implemented based on the proposed dual-metal-plane configuration. With proper design of the symmetric composite right/left-handed unit cell composed of arbitrarily adjustable lumped-elements, the passband, as well as the fractional bandwidth, can be constructed. Specifically, the implemented filters possess relatively achievable wide bandwidth in comparison with the conventional filters based on the assumption of narrow fractional-bandwidth. Besides, the approach for realizing the filters requiring broad bandwidth by cascading multiple CRLH-TL unit cells is found not suitable for filters demanding narrow bandwidth, since the corresponding lumped-element values are not practical in implementation. For this reason, by means of ZORs and inductively-coupled impedance inverters, one may easily design a filter with narrow bandwidth around 10%.
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Literature Overviews 2
1-3 Contribution 8
1-4 Dissertation Organization 10
Chapter 2 Theory and Techniques of Filters 12
2-1 Insertion-Loss Method 12
2-2 Lowpass Prototype Filters and Elements 15
2-2.1 Butterworth Lowpass Prototype Filters 15
2-2.2 Chebyshev Lowpass Prototype Filters 15
2-2.3 Quasi-Elliptic Lowpass Prototype Filters 16
2-3 Circuit Transformation on Lumped Prototype 19
2-4 Impedance and Admittance Inverters 21
2-4.1 Bandpass Filters Based on Inverters 21
2-4.2 Practical Realization 23
2-4.3 Filters using λ/4 resonators 24
2-5 Network Analysis (Even/Odd-Mode Analysis) 25
2-6 Coupled-Resonator Theory 27
2-6.1 Design Parameters for Coupled-Resonator Filters 28
2-6.2 Electric Coupling 31
2-6.3 Magnetic Coupling 33
2-6.4 Mixed Coupling 34
2-6.5 External Quality Factor 35
2-7 Design of Coupled Resonator Filters 38
2-8 Quarter-Wavelength Stepped-Impedance Resonators 40
2-8.1 Operation Concept 40
2-8.2 Practical Realization 44
Chapter 3 Composite Right/Left-Handed Transmission Lines 46
3-1 Ideal Composite CRLH TL 47
3-2 Lumped-Element Network Implementation 50
3-2.1 Basic Structure 50
3-2.2 Transmission Matrix Analysis 53
3-2.3 Cutoff Frequencies 55
3-2.4 Bloch Impedance 56
3-2.5 Balanced Case 58
Chapter 4 Novel CPW Bandpass Filters with Wideband Spurious Suppression 60
4-1 Stepped-Impedance Resonators Loaded by Air-Bridge Enhanced Capacitors 60
4-1.1 Resonance Condition 60
4-1.2 Physical Realization and Model Extraction 65
4-2 Broadside-Coupled Microstrip-to-CPW Transition Structure 69
4-3 Filter Design 72
4-4 Mechanisms of Wide-Band Spurious-Suppression 75
4-4.1 Spurious Destruction 75
4-4.2 Spurious Cancellation 78
4-4.3 Higher-Order Spurious Attenuation 79
4-5 Filter Implementation and Results 80
4-5.1 Second-Order Filter 80
4-5.2 Fourth-Order Filter 83
Chapter 5 Novel Patch-Via-Spiral Resonators for Miniaturized Bandpass Filters with Transmission Zeros 88
5-1 Patch-Via-Spiral Resonators in Dual-Plane Configuration 88
5-2 Coupled-Resonator Pairs 92
5-3 Analysis of Second-Order Filters 98
5-3.1 Equivalent Circuit 98
5-3.2 Design Procedure 104
5-4 Implementation of 2nd-Order Filters 106
5-5 Implementation of 4th-Order Filters 111
Chapter 6 Bandpass Filters Based on Composite Right/Left-Handed Transmission Lines 117
6-1 Dual-Plane CRLH-TL Unit Cell 117
6-2 Periodic Filter Implementation 125
6-2.1 Filter Centered at 3GHz with Δ = 50% 125
6-2.2 Filter Centered at 1.5GHz with Δ=100% 127
6-3 Zeroth-Order Filters with Narrow Bandwidth 130
6-3.1 Analysis of the ZOR 131
6-3.2 Design of the Inductively-coupled ZOR Filters 134
6-3.3 Implementation of the ZOR Filters 135
Chapter 7 Conclusions 139
7-1 Brief Conclusions 139
7-2 Recommendations for Future Works 140
Appendix: Abbreviations 143
References 144
Publication List 154
[1]S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microw. Theory Tech., vol. 6, pp. 223-231, Apr. 1958.
[2]J.-S. Hong and M. J. Lancaster, “Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microw. Theory Tech., vol. 46, pp. 118-122, Jan. 1998.
[3]J.-S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[4]E. G. Cristal and S. Frankel “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microw. Theory Tech., vol. 20, no. 11, pp. 719-728, Nov. 1972.
[5]H. Kanaya, T. Shinto, K. Yoshida, T. Uchiyama, and Z. Wang, “Miniaturized HTS coplanar waveguide bandpass filters with highly packed meanderlines,” IEEE Trans. Appl. Supercond., vol. 11, no.1, pp. 481-484, March 2001.
[6]H. Kanaya, J. Fujiyama, R. Oba, and K. Yoshida, “Design method of miniaturized HTS coplanar waveguide bandpass filters using cross coupling,” IEEE Trans. Appl. Supercond., vol. 13, no.2, pp. 265-268, June 2003.
[7]J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microw. Theory Tech., vol. 27, no. 1, pp. 44-50, Jan. 1979.
[8]R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 19, no. 8, pp. 678-786, July 1971.
[9]G. L. Matthaei, “Interdigital band-pass filters,” IEEE Trans. Microw. Theory Tech., vol. 10, no. 6, pp. 479-491, July 1962.
[10]C.-C. Chen, Y.-R. Chen, and C.-Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 120-131, Jan. 2003.
[11]C.-Y. Chang and C.-C. Chen, “A novel coupling structure suitable for cross-coupled filters with folded quarter-wave resonators,” IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 517-519, Dec. 2003.
[12]Z. Ma, H. Suzuki, Y. Kobayashi, K. Satoh, S. Narahashi, and T. Nojima “A low-loss 5GHz bandpass filter using HTS coplanar waveguide quarter-wavelength resonators,” in IEEE MTT-S Dig., June 2002, pp. 1967-1970.
[13]Y.-S. Lin, C.-H. Wang, C-H. Wu, C. H. Chen, “Novel compact parallel-coupled microstrip bandpass filters with lumped-element K-inverters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2324-2328, July 2005.
[14]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 12, pp. 120-131, Jan. 2003.
[15]D. Packiaraj, M. Ramesh, and A. T. Kalghatgi, “Design of a trisection folded SIR filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 317–319, May. 2006.
[16]A. Sanada, H. Takehara, T. Yamamoto, and I. Awai, “λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide” in IEEE MTT-S Int. Microw. Symp. Dig., June 2002, pp. 385-388.
[17]S.-C. Lin, C.-H. Wang, Y.-S. Lin, and C. H. Chen, “Dual quarter-wavelength hairpin bandpass filter with multiple transmission zeros,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2006, pp. 361-364.
[18]S.-C. Lin, Y.-S. Lin, and C. H. Chen, “Miniaturized microstrip interlocked-coupled bandpass filters using folded quarter-wavelength resonators,” in Asia-Pacific Microw. Conf., Dec. 2006, pp. 1427-1430.
[19]C.-F. Chen, T.-Y. Huang, and R.-B. Wu, “Novel compact net-type resonators and their applications to microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 755-762, Feb. 2006.
[20]J. Zhou, M.J Lancaster, and F. Huang, “Coplanar quarter-wavelength quasi-elliptic filters without bond-wire bridges,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1150-1156, April 2004.
[21]H. Zhang and K. J. Chen, “Miniaturized coplanar waveguide bandpass filters using multisection stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1090-1095, March 2006.
[22]E. Shih and J.-T. Kuo, “A new compact microstrip stacked-SIR bandpass filter with transmission zeros,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2003, pp. 1077-1080.
[23]Md. C. V. Ahumada, J. Martel, and F. Medina, “Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and enhanced coupling,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1082-1086, March 2004.
[24]J.-T. Kuo, M. Jiang, and H.-J. Chang, “Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 1, pp. 83–89, Jan. 2004.
[25]S.-M. Wang, C. H. Chi, M. Y. Hsieh, and C.-Y. Chang, “Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 747–753, Feb. 2005.
[26]J.-T. Kuo, S.-P. Chen, and M. Jiang, “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 440–442, Oct. 2003.
[27]F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1509–1514, Aug. 1999.
[28]C.-Y. Chang and T. Itoh, “A modified parallel-coupled filter structure that improves the upper stopband rejection and response symmetry,” IEEE Trans. Microw. Theory Tech., vol. 39, pp. 310–314, Feb. 1991.
[29]J. T. Kuo and E. Shih, ”Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554-1559, May 2003.
[30]T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip ‘wiggly-Line’ filters with spurious passband suppression,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 1593–1598, Sept. 2001.
[31]T. Lopetegi, M.A.G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez-Cuevas, M. Sorolla,M. Guglielmi, “Microstrip “wiggly-Line” bandpass filters with multispurious rejection,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 531–533, Nov. 2004.
[32]C.-H. Wu, Y.-S. Lin, C.-H. Wang and C. H. Chen, “Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 540-546, Feb. 2006.
[33]S.-C. Lin, P.-H. Den, Y.-S. Lin, C.-H. Wang, and C. H. Chen, “Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1011–1018, March 2006.
[34]P.-H. Deng, S.-C. Lin, Y.-S. Lin, C.-H. Wang, and C. H. Cheng, “Microstrip bandpass filters with dissimilar resonators for suppression of spurious responses,” in Proc. 35th European Microw. Conf., Oct. 2005, pp. 1263-1266.
[35]C.-H. Wang, P.-H. Deng, C. H. Chen, “Coplanar-waveguide-fed microstrip bandpass filters with capacitively broadside-coupled structures for multiple spurious suppression,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 768–775, April 2007.
[36]T. Tsujiguchi, H. Matsumoto, and T. Nishikawa, “A miniaturized double-surface CPW bandpass filter improved spurious responses,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 879–885, May 2001.
[37]J. Gao and L. Zhu, “Asymmetric parallel-coupled CPW stages for harmonic suppressed λ/4 bandpass filters,” Electro. Lett., vol.40, no. 18, pp. 1122-1123, Sep. 2004.
[38]H.-K. Zeng, A. Hsiao, W.-H. Hsu, S.-W. Wu, J.-Y. Lin, K.-H. Wu, J.-Y. Juang, T.-M. Uen, Y.-S. Gou, and Jen-Tsai Kuo, “Miniaturized 3 GHz cross-coupled planar microwave filters,” IEEE Trans. Appl. Supercond., vol. 14, no. 1, pp. 107-111, March 2004.
[39]J.-S. Hong and M. J. Lancaster, “Couplings of microstrip square open- loop resonators for cross-coupled planar Microw. filters,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 11, pp. 2099-2109, Nov. 1996.
[40]──, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies” IEEE Trans. Microw. Theory Tech., vol. 48, no. 7, pp. 1098-1107, July 2000.
[41]S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2482-2490, Dec. 2000.
[42]J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, New York: Wiley, 2001, pp. 56-63, pp. 258-271.
[43]K. S. K. Yeo, M. J. Lancaster, and J.-S. Hong, “The design of microstrip six-pole quasi-elliptic filter with linear phase response using extracted-pole technique,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 321-327, Feb. 2001.
[44]C.-K. Liao and C. Y. Chang, “Design of microstrip quadruplet filters with source-load coupling,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2302-2308, July. 2005.
[45]P.-H. Deng, Y.-S. Lin, C.-H. Wang, C. H. Chen, “Compact microstrip bandpass filters with good selectivity and stopband rejection,” IEEE Trans. Microw. Theory Tech., vol. 54, no .2, pp. 533-539, Feb. 2006.
[46]H. Zhang and K.J. Chen, “A tri-section stepped-impedance resonator for cross-coupled bandpass filters,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 401–403, June 2005.
[47]Y. Mu, Z.g Ma, and D. Xu, “A novel compact interdigital bandpass filter using multilayer cross-coupled folded quarter-wavelength resonators,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 847–849, Dec. 2005.
[48]C.Y. Tan, L. Chen, J. Lu, X.S. Rao, and C.K. Ong, “Cross-coupled dual-spiral high-temperature superconducting filter,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 6, pp. 247–249, Dec. 2003.
[49]H.R. Yi, S.K. Remillard, and A. Abdelmonem, “A novel ultra-compact resonator for superconducting thin-film filters” IEEE Trans. Microw. Theory Tech., vol. 51, no .12, pp. 2290-2296, Dec. 2003.
[50]S. Jovanovic and A. Nesic, “Microstrip bandpass filter with new type of capacitive coupled resonator,” Electro. Lett., vol.41, no. 1, pp. 19-21, Jan. 2005.
[51]S.-C. Lin, Y.-S. Lin, and C. H. Chen, “Compact microstrip bandpass filters with quarter-wavelength stepped-impedance resonators,” in 35th European Microwave Conf. Proc., 2005, pp. 931-934.
[52]K.-X. Ma, J.-G. Ma, M.A. Do, and K.S. Yeo, “Compact two-order bandpass filter with three finite zero points” Electro. Lett., vol.41, no. 15, pp. 846-848, July. 2005.
[53]L.-H. Hsieh and K. Chang, “Tunable microstrip bandpass filters with two transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 520-525, Feb. 2003.
[54]C.-H. Wu, Y.-S. Lin, C.-H. Wang, and C. H. Chen, “Compact microstrip coupled-line bandpass filter with two cross-couplings for creating multiple transmission zeros,” in 35th European Microwave Conf. Proc., 2005, pp. 1267-1270.
[55]──, “Compact microstrip coupled-line bandpass filter with four transmission zeros,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 9, pp. 579–581, Sept. 2005.
[56]Y.-S. Lin, H.-M. Yang, and C. H. Chen, “Miniature microstrip parallel-coupled bandpass filters based on lumped-distributed coupled-line sections,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2005, pp. 691-694.
[57]S.-J. Yao, R. R. Bonetti, and A. E. Williams, “Generalized dual-plane multicoupled line filters,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 12, pp. 2182-2189, Dec. 1993.
[58]J.-S. Hong and M. J. Lancaster, “Aperture-coupled microstrip open-loop resonators and their applications to the design of novel microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1848-1855, Sep. 1993.
[59]A. Djaiz and T. A. Denidni, “A new two-layer bandpass filter using stepped impedance hairpin resonators for wireless applications,” in 2005 IEEE MTT-S Int. Microw. Symp. Dig., Long Beach, CA, June 2005, pp. 1487-1490.
[60]W. Menzel and A. Balalem, “Quasi-lumped suspended stripline filters and diplexers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3230-3237, Oct. 2005.
[61]T. Kitamura, Y. Horii , M. Geshiro, and S. Sawa, “A dual-plane comb-line filter having plural attenuation poles,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 4, pp. 1216-1219, April 2002.
[62]T.-N. Kuo, S.-C. Lin, and C. H. Chen, “Compact ultra-wideband bandpass filters using composite microstrip-coplanar waveguide structure,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3772–3778, Oct. 2006.
[63]H. Wang, Lei Zhu, and W. Menzel, “Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844–846, Dec. 2005.
[64]K. Li, D. Kurita, and T. Matsui, “An ultrawideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure” in 2005 IEEE MTT-S Int. Microw. Symp. Dig., June 2005, pp. 675-678.
[65]L. H. Hsieh and K. Chang, “Compact, low insertion-loss, sharp-rejection, and wide-band microstrip bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1241–1246, Feb. 2003.
[66]M. K. Mandal and S. Sanyal, “Compact wideband bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 46–483, Jan. 2006.
[67]H. Shaman and J.-S. Hong, “Ultra-wideband (UWB) bandpass filter with embedded band notch structures,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 193–195, March 2007.
[68]N. Thomson and J.-S. Hong “Compact ultra-wideband microstrip/coplanar waveguide bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 184–186, March 2007.
[69]P. Mondal and A. Chakrabarty, “Compact wideband bandpass filters with wide upper stopband,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 31–33, Jan. 2007.
[70]K. M. Shum, K. M. Luk, C. H. Chan, and Q. Xue, “A UWB bandpass filter with two transmission zeros using a single stub with CMRC,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 43–55, Jan. 2007.
[71]R. Gomez-Garcia and J. I. Alonso, “Design of sharp-rejection and low-loss wide-band planar filters using signal-interference techniques,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 530–532, Aug. 2005.
[72]P. Cai, Z. Ma, X. Guan, X. Yang, Y. Kobayashi, T. Anada, and G. Hagiwara, “A compact UWB bandpass filter using two-section open-circuited stubs to realize transmission zeros,” in Asia-Pacific Microw. Conf., Dec. 2006.
[73]V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Phys. Usp., vol. 10, no. 4, pp. 509–514, Jan 1968.
[74]R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77–79, Apr. 6, 2001.
[75]A. K. Iyer and G. V. Eleftheriades, “Negative refractive index metamaterials supporting 2-D waves,” in IEEE MTT-S Dig., vol. 2, June 2–7, 2002, pp. 1067–1070.
[76]G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L–C loaded transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2702–2712, Dec. 2002.
[77]C. Caloz and T. Itoh, “Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip “LH line”,” in Proc. IEEE International Symp. Antennas and Propagation, vol. 2, June 16–21, 2002, pp. 412–415.
[78]C. Caloz and T. Itoh, “Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line,” IEEE Trans. Antennas Propagat. vol. 52, no. 5, pp. 1159-1166, May 2004.
[79]R. Islam and G. V. Eleftheriades, “Phase-agile branch-line couplers using metamaterial lines,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 340–342, July 2004.
[80]R. Islam and G. V. Eleftheriades, “Coupled-line metamaterial coupler having co-directional phase but contra-directional power flow,” Electronics Letters, vol. 40, no. 5, March 2004.
[81]C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 980-992, March 2004.
[82]H. Okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 798-804, March 2004.
[83]I.-H. Lin, M. DeVincentis, C. Caloz, and T. Itoh, “Arbitrary dual-band components using composite right/left-handed transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1142–1149, Apr. 2004.
[84]S. Lim, C. Caloz, and T. Itoh, “Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 12, pp. 2678-1690, Dec. 2004.
[85]──, “Electronically scanned composite right/left handed microstrip leaky-wave antenna,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 6, pp. 277–279, June. 2004.
[86]J.-G. Lee and J.-H. Lee, “Zeroth order resonance loop antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 994–997, March 2007.
[87]C.-H. Tseng and T. Itoh, “Dual-band bandpass and bandstop filters using composite right/left-handed metamaterial transmission lines,” in IEEE MTT-S Dig., June 2006, pp. 931-934.
[88]Y. Horii, C. Caloz, and T. Itoh, “Super-compact multilayered left-handed transmission line and diplexer application,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 1527-1534, April 2005.
[89]J. Perruisseau-Carrier and A. K. Skrivervik, “Composite right/left-handed transmission line metamaterial phase shifters (MPS) in MMIC technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1582-1589, June 2006.
[90]M. A. Antoniades and G. V. Eleftheriades “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wireless Propagat. Lett., vol. 2, pp. 103–106, 2003.
[91]M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “A 0.13-μm CMOS phase shifter using tunable positive/negative refractive index transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 705–707, Dec. 2006.
[92]J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, New York: Wiley, 2001.
[93]J. S. Hong and M. J. Lancaster, “Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 7, pp. 1098-1107, July 2000.
[94]C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, New Jersey: Wiley, 2006.
[95]M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078-1085, April 1997.
[96]C.-C. Chang, C. Caloz, and T. Itoh , “Analysis of a compact slot resonator in the ground plane for microstrip structures,” in 2001 Asia-Pacific Microwave Conference Proceedings, pp. 1100-1103, Dec. 2001.
[97]J. J. Burke and R. W. Jackson, “Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 3, pp. 519–525, Mar. 1989.
[98]Lei Zhu and W. Menzel, “Broad-band microstrip-to-CPW transition via frequency-dependent electromagnetic coupling,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1517–1522, May 2004.
[99]G. Matthaei, L. Young, and E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964, pp. 427-440 and pp. 464-471.
[100]G. A. Kouzaev, M. J. Deen, N. K. Nikolova, and A.H. Rahal, “Cavity models of planar components grounded by via-holes and their experimental verification,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. 1033-1042, March 2006.
[101]G.-A, Lee, M. Megahed, and F. De Flaviis, "Design of multilayer spiral inductor resonator filter and diplexer for system-in-a-package," in 2003 IEEE MTT-S Int. Microw. Symp. Dig., June 2003, pp. 527-530.
[102]C. A. Tavernier, R. M. Henderson, and J. Papapolymerou “A reduced-size silicon micromachined high-Q resonator at 5.7 GHz,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2305-2314, Oct. 2002.
[103]G. Zhang, Frederick Huang, and M. J. Lancaster, “Superconducting spiral filters with quasi-elliptic characteristic for radio astronomy,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 947-951, March 2005.
[104]K. A. Zaki and C. Chen, “Coupling of non-axially symmetric hybrid modes in dielectric resonators,” IEEE Trans. Microw. Theory Tech., vol. 35, no. 12, pp.1136-1142, Dec. 1987.
[105]R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, New York: Wiley, 2001, pp. 289-297.
[106]A. Lai, T. Itoh, and C. Caloz, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Magazine, vol. 5, no. 3, pp. 34-50, Sept. 2004.
[107]D. M. Pozar, Microwave Engineering, New York: Wiley, 1998.
[108]A. Sanada, C. Caloz, and T. Itoh, “Novel zeroth-order resonance in composite right/left handed transmission line resonators,” in 2003 Asia-Pacific Microwave Conference Proceedings, pp. 1588-1592, Dec. 2003.
[109]S.-G. Mao, M.-S. Wu, Y.-Z. Chueh, and C. H. Chen, “Modeling of symmetric composite right/left-handed coplanar waveguides with applications to compact bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp.3460-3466, Nov. 2005.
[110]J. K. A. Everard and K. K. M. Cheng, “High performance direct coupled bandpass filters on coplanar waveguide,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 9, pp. 1568-1573, Sept. 1993.
[111]D. F. Williams and S. E. Schwarz, “Design and performance of coplanar waveguide bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 83, no. 7, pp. 558-566, July 1983.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 〔33〕 姚乃嘉,「回歸仲裁制度與國際接軌」,營建知訊,274期,44∼51頁,民國九十四年十一月
2. 〔30〕 劉志鵬,「談監造工程司(工程司)之決對權」,營造天下,97/98期,20∼26頁,民國九十三年二月
3. 〔30〕 劉志鵬,「談監造工程司(工程司)之決對權」,營造天下,97/98期,20∼26頁,民國九十三年二月
4. 〔19〕 藍瀛芳,「工程爭議仲裁」,商務仲裁,39期,10∼19頁,民國八十四年六月。藍瀛芳,「公共工程爭議有何訴訟外之解決途徑」,商務仲裁,36期,22∼27頁,民國八十三年四月。藍瀛芳,「公共工程有何訴訟外之解決途徑」,律師通訊,172期,23∼26頁,民國八十三年一月
5. 〔19〕 藍瀛芳,「工程爭議仲裁」,商務仲裁,39期,10∼19頁,民國八十四年六月。藍瀛芳,「公共工程爭議有何訴訟外之解決途徑」,商務仲裁,36期,22∼27頁,民國八十三年四月。藍瀛芳,「公共工程有何訴訟外之解決途徑」,律師通訊,172期,23∼26頁,民國八十三年一月
6. 〔18〕 李志鵬,「公共工程爭議之仲裁處理探討」,中華技術,59期,2∼9頁,民國八十二年八月
7. 〔18〕 李志鵬,「公共工程爭議之仲裁處理探討」,中華技術,59期,2∼9頁,民國八十二年八月
8. 〔17〕 陳煥文,「國際營建工程爭議解決之代替方案」,法律評論,2∼9頁,民國八十三年
9. 〔17〕 陳煥文,「國際營建工程爭議解決之代替方案」,法律評論,2∼9頁,民國八十三年
10. 〔16〕 蕭家進,「公共工程爭議處理的省思」,現代營建,65∼70頁,民國九十年八月
11. 〔16〕 蕭家進,「公共工程爭議處理的省思」,現代營建,65∼70頁,民國九十年八月
12. 〔15〕 藍瀛芳,「簡述訴訟外解決爭議的方法(ADR)」,商務仲裁,44期,1∼11頁,國八十五年十二月
13. 〔15〕 藍瀛芳,「簡述訴訟外解決爭議的方法(ADR)」,商務仲裁,44期,1∼11頁,國八十五年十二月
14. 〔33〕 姚乃嘉,「回歸仲裁制度與國際接軌」,營建知訊,274期,44∼51頁,民國九十四年十一月
15. 〔34〕 林芝綺,「爭議審查委員會機制之介紹」,仲裁季刊,81∼88頁,民國九十年二月