跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳敏哲
研究生(外文):Min-Jhe Wu
論文名稱:藉多重無線設備平行傳輸增加網路電話語音品質
論文名稱(外文):Improving VoIP Call Quality in Multi-radio Devices via Parallel Transmissions
指導教授:蔡志宏蔡志宏引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:51
中文關鍵詞:網路電話通話品質多重無線平行傳輸
外文關鍵詞:VoIPcall qualitymulti-radioparallel transmission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當網路電話還在初發展的階段,人們只把它當作是個免費的服務,並不太在意通話品質的好壞。但如今,網路電話已越來越盛行,並且大有取代傳統電信網路的架勢。網路電話能否持越來越受歡迎的關鍵絕對不是在於它是否廉價,而是在於它的通話品質能否持續的提升。
這幾年來,配有多重無線網路介面的用戶端設備變得越來越受歡迎,原因當然是各式無線網路的方便性和越來越便宜的售價。多重無線設備可以包括固定式多重無線設備(像是802.11a/b/g多模多網卡之無線閘道器)和可配有如2G/3G/無線區域網路之多重無線設備(像是PDA或是smartphone)。使用多重無線設備的主要原因有增加流量,降低成本,還有增加便利性和可靠性。最近幾年,因為無線網路介面卡價格越來越便宜,每個人都負擔得起一台可攜式多重無線設備。本論文首先提出採用重覆平行傳輸方式來改善無線頻道傳送VoIP封包之延遲和遺失情形,並提出了頻道選擇演算法和頻道切換演算法,只要在多重無線設備上實現這此二演算法,就能夠有效運用多個無線通道間的互補功能,改善網路電話的通話品質。
為了驗證我們演算法的效能,我們用C語言寫了模擬程式,並使用IEEE802.11a當作我們實驗的頻道。模擬的結果顯示在無線通道的傳輸品質不是太差且背景資料流量不是持續嚴重的情況下,執行我們演算法的多重無線設備可提供網路電話可以接受的通話品質。
When VoIP was in the initial developing stage, people thought it as a free service and did not care the voice quality too much. VoIP is more and more popular around the world and is going to replace a part of traditional telecommunication. The key that VoIP can keep gaining popularity in the future absolutely not lies in its cost effectiveness but in its the improvement of voice quality.
In recent years, multi-radio device has become more and more popular because its convenience and cost down of such radio modules. Multi-radio devices include fixed multi-radio devices (such as 802.11a/b/g multi-mode multi-radio gateway) and mobile multi-radio devices (such as 2G/3G/WLAN PDA and smartphone). The main purposes of multi-radio devices are to increase the total throughput, cost effectiveness, convenience, and the reliability. Because the cost of wireless network interface modules have been decreased rapidly in recent years, everyone should be able to afford such a mobile multi-radio device. In this thesis, we use duplicated parallel transmission to reduce the delay and packet loss condition, and then propose the Channel Selection Algorithm and the Channel Switching Algorithm deployed in multi-radio devices to improve the VoIP call quality by exploring the complementary properties among parallel channels.
In order to verify the performance of our algorithms, we execute the simulations in C language and use IEEE 802.11a as the wireless channel environment. The simulation results show that under the circumstances that the wireless channels quality is not too bad and the background traffic is not constantly heavy, the proposed multi-radio device system dose provide an acceptable VoIP call quality.
Chapter 1 Introduction 1
1.1 Motivations and Goals 1
1.2 Related works 2
Chapter 2 System Architecture and Algorithms 5
2.1 System Architecture 5
2.1.1 System Architecture 1: Parallel Transmission Between Two Wireless Multi-radio Gateways 5
2.1.2 System Architecture 2: Parallel Transmission Between a Wireless Multi-radio Gateway and a Mobile Multi-radio Device 7
2.2 The System Queueing Model and System Flow Chart 8
2.2.1 System Queueing Model 8
2.2.2 System Flow Chart 10
2.3 Algorithms 11
2.3.1 ITU-T E-Model 11
2.3.2 Channel Selection Algorithm 14
2.3.3 Channel Switching Algorithm 23
2.4 The power saving issues in Channel Selection Algorithm 26
Chapter 3 Simulation Results 29
3.1 Simulation scenario 29
3.2 Simulation Environments 30
3.2.1 Traffic source 30
3.2.2 Channel Type 32
3.3 Simulation Results 33
3.3.1 Case 1: A VoIP call 33
3.3.2 Case 2: A VoIP call with background traffic 41
Chapter 4 Implementation direction, conclusions, and future works 45
4.1 Implementation direction in multi-radio gateway 45
4.2 Conclusions 47
4.3 Future Works 48
References 49
[1] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive
Playout Mechanisms for Packetized Audio Applications in Wide-Area
Networks,” in Proc. IEEE Infocom’94, 1994.
[2] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay adjustment: Performance bounds and algorithm,” ACM/Springer Multimedia Systems, 6:17--28, Jan. 1998.
[3] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery techniques for streaming audio,” IEEE Network, vol. 12, pp. 40–48, Sept-Oct 1998.
[4] V. Hardman, A. Sasse, and A. Watson, “Reliable audio for use over the Internet,” in Proceedings of INET ’95, June 1995, pp. 171–178.
[5] S. Tao, K. Xu, A. Estepa, T. Fei, L. Gao, R. Guerin, J. Kurose, D. Towsley, and Z.-L. Zhang, “Improving VoIP Quality Through Path Switching,” in INFOCOM 2005, Mar. 2005.
[6] M. Ghanassi and P. Kabal, “Optimizing Voice-over-IP Speech Quality Using Path Diversity,” in Multimedia Signaling Processing, IEEE, 2006
[7] D. J. Goodman, G. B. Lockhart, O. J. Wasem and W. C. Wong, “Waveform Substitution Techniques for Recovering Missing Speech Segments in Packet Voice Communications,” IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 34(6), pp. 1440-1448, 1986.
[8] L. Ding and R. Goubran, “Speech quality prediction in VoIP using the extended E-model,” in IEEE GLOBECOM, San Francisco, USA, 2003.
[9] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis, “1-800-OVERLAYS: Using Overlay Networks to Improve VoIP Quality,” in Proceedings of the ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 2005), pages 51-56, Skamania, WA, June 2005.
[10] H. Melvin and L. Murphy, “Time Synchronization for VoIP Quality of Service,” IEEE Internet Computing, Vol. 6, pp. 57-63, 2002.
[11] S. Ganguly, V. Navda, K. Kim, A. Kashyap, D. Niculescu, R. Izmailov, S. Hong, and S. Das, "Performance Optimization for Deploying VoIP Services in Mesh Networks", IEEE Journal on Selected Areas in Communications 24(11):2147-2158, 2006.
[12] Janssen J, Vleeschauwer D D, and Petitit G H, “Delay and distortion bounds for packetized voice calls of traditional PSTN quality,” in Proc. 1st IP Telephony Workshop ( IPTel 2000 ) , Berlin, Germany, Apr. 2000, pp.105--110.
[13] “The e-model, a computational model for use in transmission planning,” ITU-T Recommendation G.107, March 2003.
[14] R. G. Cole and J. H. Rosenbluth, “Voice over IP performance monitoring,” Computer Communication Review, vol. 31, no. 2, pp. 9–24, April 2001.
[15] ITU-T Recommendation G.113, “General Characteristics of General Telephone Connections and Telephone Circuits – Transmission Impairments,” February 1996.
[16] IEEE 802.11a: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5Ghz band, IEEE 802.11a standard,1999.
[17] ITU-T Recommendation G.711, “Pulse code modulation (PCM) of voice frequencies,” 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top