跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 23:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳又新
研究生(外文):Yu-Hsin Chen
論文名稱:適用於24-GHz通訊系統之CMOS無線接收機電路設計與實現
論文名稱(外文):Design and Implementation of CMOS Wireless Receiver Circuits for 24-GHz Communication Systems
指導教授:呂良鴻
指導教授(外文):Liang-Hung Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:80
中文關鍵詞:24-GHz微波單晶積體電路接收機前端電路發送/接收切換器低相位雜訊壓控振盪器
外文關鍵詞:24-GHzMMICreceiver frontendT/R siwtchlow phase noise VCO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著對無線通訊頻寬需求的升高,低成本高效能的微波積體電路的發展也漸趨熱門。傳統上,由於較好的元件特性,高頻積體電路多利用III-V半導體製程和SiGe BiCMOS製程實現。CMOS製程擁有低成本及高度整合性的優勢,似乎非常適合作此種電路的應用。然而,由於嚴重的基板損耗及較差的高頻特性,利用CMOS製程來實現這樣的系統,仍舊是項挑戰。因此,本論文將描述CMOS製程在設計高頻電路時的一些設計考量,接著提出不同的電路技巧來實現。
首先,本論文將介紹一應用於24-GHz之0.18-µm CMOS 傳送端/接收端切換器。為了提高關閉時的隔離度,提出ㄧ增加隔離度之電路技巧,藉由增加一額外開關,可有較佳的隔離度及合理的穿透損耗。此外,採用阻抗轉換的技巧來提升功率特性。量測結果顯示此單刀雙擲切換器在24-GHz可達到2.5-dB的穿透損耗及20-dB的隔離度,同時輸入及輸出反射損耗皆大於14-dB。且因採用阻抗轉換技巧,此切換器之輸入P1dB為24.2-dBm。
接著,本論文提出ㄧ應用於24-GHz之接收機架構。採用CMOS 0.18-µm製程,此接收機前端電路整合了低雜訊放大器、混波器及中頻放大器而擁有良好的轉換增益及低雜訊表現。量測結果顯示,在中頻頻率為4.82-GHz的情況下,此電路擁有28.4-dB的轉換增益及6-dB的雜訊,同時輸入反射損耗大於14-dB;而輸入P1dB及IIP3分別為-23.2及-13.0-dBm。在1.8-V的工作電壓下,功率消耗為54mW。
最後介紹一個適用於之前提出之24-GHz接收機架構之本地信號產生器。該電路由ㄧ19-GHz低相位雜訊壓控振盪器、除四除頻器、及相位調整器構成。藉由雜訊濾除技巧及電容回授以增加gm,可有效降低振盪器相位雜訊。此外,信號經除四除頻器及相位調整器調整後,可提供精準的四相位信號。
As the demands for wider bandwidth in wireless communication continue to expand, the development of low-cost and high-performance monolithic microwave integrated circuits (MMICs) have attracted great attention. Conventionally, the high-frequency integrated circuits were realized by III-V compound semiconductor and SiGe BiCMOS process due to their superior device performance. Owing to unparalleled advantages in both fabrication cost and denser integration, the CMOS technology appears to be well suited to implement these designs. However, it still remains a challenge for such RF building blocks to be integrated in a standard CMOS process due to its significant substrate losses and inferior high-frequency properties of the active devices. Consequently, this thesis describes the design consideration of the CMOS process for the individual building blocks then presents several novel circuit techniques to reach the requirements for the system designs.
First, a transmit/receive (T/R) switch for the 24-GHz ISM band application implemented in a standard 0.18-m CMOS process is demonstrated. A technique to enhance the isolation performance is proposed for the T/R switch. Reasonable isolation and insertion loss are achieved with an additional switch. Besides, impedance transformation networks (ITNs) is utilized to reduce the source and load impedance seen from the switch to increase the power handling capability. The fabricated SPDT (single-pole double-throw) switch at 24-GHz exhibits an insertion loss of 2.5 dB and an isolation of 20 dB while maintaining an input and output return loss better than 14 dB and 19 dB, respectively. Owing to the use of the ITNs, the measured Pin-1dB of the switch is 24.2 dBm.
Secondly, a receiver architecture is presented for operations at the 24-GHz frequency band. By monolithically integrating the LNA, the down-conversion mixer and the IF amplifiers, the receiver frontend is realized in a 0.18-m CMOS process, exhibiting enhanced circuit performance in terms of conversion gain and noise figure. With an IF frequency of 4.82-GHz, the fabricated circuit demonstrates a conversion gain of 28.4 dB and a noise figure of 6.0 dB while maintaining an input return loss better than 14 dB. The measured Pin-1dB and IIP3 of the receiver frontend are -23.2 and -13.0 dBm, respectively. The power consumption for the receiver frontend is 54mW at a supply voltage of 1.8 V,.
Finally, a signal generator which provides the required LO outputs for the proposed receiver architecture is presented. The proposed LO generator consists of a 19-GHz low-phase-noise voltage-controlled oscillator (VCO), a 4:1 frequency divider and a quadrature phase tuning circuit. With a noise filtering technique and gm-boosting capacitive feedback, the VCO exhibits low phase noise with adequate frequency tuning range. Besides, an interpolation technique, which is originally developed for ring oscillators, is adopted for the phase tuning the quadrature signal provided by the frequency divider to obtain accurate phases.
Table of Contents


Chapter1 Introduction 1
1.1 Motivation 1
1.2 Overview of the thesis 2

Chapter2 RF Receiver Fundamentals 3
2.1 Linearity 3
2.1.1 Gain Compression 4
2.1.2 Input-referred Third Order Intercept Point (IIP3) 5
2.1.3 Input-referred Second Order Intercept Point (IIP2) 7
2.2 Noise Figure 7
2.3 Sensitivity 9
2.4 Dynamic Range 10
2.5 Receiver Architectures 12
2.5.1 Superheterodyne Receiver 12
2.5.2 Direct-Conversion Receiver 14
2.5.3 Low-IF Receiver 16
2.5.4 Wideband-IF Receiver 17
2.5.5 Half-IF Receiver 18
2.6 Design Challenges of High Frequency Operation 20

Chapter 3 A 24-GHz Fully Integrated Single-Pole Double-Throw Switch in a 0.18-m CMOS Process 23
3.1 Introduction 23
3.2 The Proposed Isolation-Enhanced Switch 24
3.2.1 Isolation issue 24
3.2.2 The Proposed Isolation-Enhanced Technique 28
3.3 Circuit Design 31
3.4 The Experimental Results 34
3.5 Conclusion 37

Chapter 4 CMOS Wireless Receiver Front-End for 24-GHz ISM band Applications 39
4.1 Introduction 39
4.2 The Proposed Receiver Architecture 40
4.3 The Proposed Receiver Design 43
4.3.1 The Low-Noise Amplifier 43
4.3.2 The Mixer and the IF Amplifiers 47
4.4 The Experimental Results 51
4.5 Conclusion 54

Chapter 5 CMOS LO Signal Generator for 24-GHz Receiver
Applications 57
5.1 Introduction 57
5.2 The Proposed LO Signal Generator Architecture 58
5.3 The Proposed LO Signal Generator Design 62
5.3.1 The Voltage-Controlled Oscillator 62
5.3.2 The Divide-by-Four Circuit with Phase Tuning 65
5.3.3 The testing passive mixer 69
5.4 The simulation results and measurement setup 70
5.4.1 The simulation results 70
5.4.2 The measurement setups 72
5.5 Discussion and Conclusion 74

Chapter 6 Conclusion 75
[1]B. Razavi, RF Microelectronics. Upper Saddle River, NJ: Prentice Hall, 1998.H.
[2]T. Friis, “Noise Figure of radio Receivers,” Proceeding IRE, vol. 32, pp. 419-422, July 1944.
[3]F. Behbahani, J. Leete and A. A. Abidi, “CMOS Mixers and Polyphase Filters for Large Image Rejection,” IEEE Journal of Solid State Circuits, vol. 36, no. 6, pp.873-887, June 2001.
[4]C. H. Doan, S. Emami, A. M. Niknejad and R. W. Brodersen, “Millimeter- wave CMOS design,” IEEE Journal of Solid State Circuits, vol. 40, no. 1, pp.144-155, Jan. 2001.
[5]P. H. Woerlee an et al., “RF-CMOS performance trends,” IEEE Transactions on Electron Devices, vol. 48, no. 8, pp. 1776-1782, Aug. 2001.
[6]F.-J. Huang and K. K. O, “A 0.5- μm CMOS T/R switch for 900-MHz wireless applications,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 486–492, Mar. 2001.
[7]F.-J. Huang and K. K. O, “Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p-silicon substrates,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 35–41, Jan. 2004.
[8]Z. Li, H. Yoon, F.-J. Huang, and K. K. O, “5.8-GHz CMOS T/R switches with high and low substrate resistance in a 0.18-μm CMOS process,” IEEE Microwave. Wireless Component Letter, vol. 13, no. 1, pp. 1–3, Jan. 2003.
[9]N. Talwalkar, C. Yue, H. Guan, and S. Wong, “Integrated CMOS transmit-receive switch using LC-tuned substrate bias for 2.4-GHz and 5.2-GHz applications,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 863–870, Jun. 2004.
[10]M.-C. Yeh, R.-C. Liu, Z.-M. Tsai, and H. Wang, “A miniature low-insertion-loss, high-power CMOS SPDT switch using floating-body technique for 2.4-and 5.8-GHz applications,” in IEEE RFIC Symp. Dig., 2005, pp. 451–454.
[11]T. Ohnakado, S. Yamakawa, T.Murakami, A. Furukawa, E. Taniguchi,H. Ueda, N. Suematsu, and T. Oomori, “21.5-dBm power-handling 5-GHz transmit/receive CMOS switch realized by voltage division effect of stacked transistor configuration with depletion-layer-extended transistors (DETs),” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp.577–584, Apr. 2004.
[12]M.-C. Yeh, Z.-M. Tsai, and H. Wang, “A miniature dc-to-50 GHz CMOS SPDT distributed switch,” in IEEE European Microwave Conference, 4-6 Oct. 2005,Volume 3, 4 pages
[13]Y. Lin, and C. Nguyen, “Ultra-compact high-linearity high-power fully integrated dc-20-GHz 0.18-μm CMOS T/R switch,” IEEE Trans. Microw. Theory Tech., vol.55, no. 1, pp. 30-36, Jan. 2007
[14]Z. Li and K. K. O, “15-GHz fully integrated nMOS switches in a 0.13-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp.2323–2328, Nov. 2005.
[15]C. Cao and et al., “A 24-GHz transmitter with an on-chip antenna in 130-nm CMOS,” IEEE Symposium on VLSI Circuits Digest of Technical Papers, pp. 148-149, June 2006.
[16]A. W. L. Ng and et al., “A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18-mm CMOS process,” IEEE Journal of Solid-State Circuits, vol. 41, no. 6, pp. 1236-1244, June 2006.
[17]A. Natarajan, A. Komijani and A. Hajimiri, “A fully integrated 24-GHz phase-array transmitter in CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2502-2514, Dec. 2005.
[18]X. Guan, H. Hashemi and A. Hajimiri, “A fully integrated 24-GHz eight-element phase-array receiver in silicon,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2311-2320, Dec. 2004.
[19]X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[20]C. Meliani and et al., “GaAs HBT low power 24 GHz downconverter with on-chip local-oscillator,” IEEE European Microwave Integrated Circuits Conference, pp. 141-144, Sept. 2006.
[21]B. Matinpour and et al., “K-band receiver front-ends in a GaAs metamorphic HEMT process,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2459-2463, Dec. 2001.
[22]Y. Mimino and et al., “High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 209-212, June 2000.
[23]B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17-22, Jan. 2006.
[24]H. Shigematsu and et al., “Millimeter-wave CMOS circuit design,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 472-477, Feb. 2005.
[25]C. H. Doan and et al., “Millimeter-wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[26]T. H. Lee, The design of CMOS radio frequency integrated circuits. Cambridge, U.K.: Cambridge Univ. Press, 1998.
[27]W. Guo and D. Huang, “The noise and linearity optimization for a 1.9-GHz CMOS low noise amplifier,” IEEE Asia-Pacific Conference, pp.253-257, Aug. 2002.
[28]H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifiers-theory, design, and applications,” IEEE Transaction on Microwave Theory and Techniques, vol. 50, no. 1, pp. 288-301, Jan. 2002.
[29]Q. Li, and J. S. Yuan, “Linearity analysis and design opitimization for 0.18μm CMOS RF mixer,” IEE Proceedings-Circuits, Devices, and Systems, vol. 149, issue 2, pp. 112-118, April 2002.
[30]P. Sivonen, A. Vilander and A. Parssinen, “A gain stabilization technique for tuned RF low-noise amplifiers,” IEEE Transaction on Circuits and Systems-I: Regular Papers, vol. 51, no. 9, pp. 1702-1707, Sept. 2004.
[31]R. Hartley, “Modulation system,” U.S. Patent 1 666 206, Apr. 1928.
[32]D. K.Weaver, Jr., “A third method of generation and detection of single sideband signals,” Proc. IRE, pp. 1703–1705, June 1956.
[33]F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS Mixers and Polyphase Filters for Large Image Rejection,” IEEE Journal of Solid-State Circuits, vol. 36, no. 6, pp. 873-887, June 2001.
[34]F. O. Eynde et al., “Fully integrated chip SOC for bluetooth,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2001. pp.196-197.
[35]P. Andreani, A. Bonfanti, L. Roman
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top