|
Bibliography [1] Ahmed, G. P., and P. Daly, “Finite-element method for inhomogeneous waveguides,” Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661–1664, 1969. [2] Ando, T., H. Nakayama, S. Numata, J Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J Lightwave Technol., vol. 20, pp. 1627–1634, 2002. [3] Auguste, J. L., J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol., vol. 8, pp. 89–105, 2002. [4] Bachmann, M., M. K. Smit, L. B. Soldano, P. A. Besse, E. Gini, and H. Melchior, “Polarization-insensitive low-voltage optical waveguide switch using In- GaAsP/InP four-port Mach-Zehnder interferometer,” in Proc. Conf. Opt. Fiber Commun. (OFC), San Jos´e, CA, pp. 23–33, 1993. [5] Barkou, S. E., J. Broeng, and A. Bjarklev, “Silica-air photonoc crystal fiber design that permits waveguiding by a true photonic band gap effect,” Opt. Lett., vol. 24, pp. 46–48, 1999. [6] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguides by a new finite difference method,” J. Lightwavw Technol., vol. 34, pp. 1104–1113, 1986. [7] Brixner, B., “Refractive-index interpolation for fused silica,” J. Opt. Soc. Amer., vol. 57, pp. 674–676, 1967. [8] Broeng, J., D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol., vol. 5, pp. 305– 330, 1999. [9] Bryngdahl, O., “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, pp. 416–419, 1973. [10] Buck, J. A., Fundamentals of Optical Fibers, Wiley-Interscience (2004). [11] Cendes, Z. J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,” IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124–1131, 1970. [12] Chaudhuri, P. R., V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: Modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett., vol. 16, pp. 1301–1303, 2004. [13] Chew, W. C., and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinate,” IEEE Microwave Opt. Technol. Lett., vol. 7, pp. 599–604, 1994. [14] Chiang, P. J., C. P. Yu, and H. C. Chang, “Robust calculation of chromatic dispersion coefficients of optical fibers from numerical determined effective indices using Chebyshev-Lagrange interpolation polynomials,” J. Lightwave Technol., vol. 24, pp. 4411–4416, 2006. [15] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J.P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 282, pp. 1479–1479, 1999. [16] Ditkowski, A., J. S. Hesthaven, and C. H. Teng, “Modeling dielectric interfaes in the FDTD-method: A comparative study,” in 2000 Progress in Electromagnetics Research (PIERS 2000) Proceedings, Cambrige, Massachusetts, 2000. [17] Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, “Staircase-free finite-difference time-domain formulation for general materials in complex geimetries,” IEEE Trans. Antennas Propagat., vol. 49, pp.749–756, 2001. [18] Ferrando, A., E. Silvestre, J. J. Miret, P. Andr´es, and M. V. Andr´es, “Fullvector analysis of a realistic photonic crystal fiber,” Opt. Lett., vol. 24, pp. 276–278, 1999. [19] Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp. 790-792, 2000. [20] Ferrando, A., E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, “Designing the properties of dispersionflattened photonic crystal fibers,” Opt. Express, vol. 9, pp. 687–697, 2001. [21] G´er¨ome, F., J.-L. Auguste, and J.-M. Blondy, “Design of dispersioncompensating fibers based on a dual-concentric-core photonic fibers,” Opt. Lett., vol. 29, pp. 2725–2727, 2004. [22] Gruner-Nielsen, L., S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion compensating fibres,” Opt. Fiber Technol., vol. 6, pp. 164–180, 2000. [23] Gr¨uner-Nielsen, L., M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir and D. Jakobsen, “Dispersion-compensating fibers,” IEEE J. Lightwave Technol., vol. 23, pp. 3566–3579, 2005. [24] Gundu, K. M., M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flatteneddispersion selectively liquid-filled photonic crystal fibers,” Opt. Express, vol. 14, pp. 6870–6878, 2006. [25] Hadley, G. R., “High-accuracy finite-element equations for dielectric waveguide analysis II: dielectric corners,” J. Lightwave Technol., vol. 20, pp.1219–1231, 2002. [26] Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 588–590, 2001. [27] Knight, J. C., T. A. Birks, P. St. J. Russel, and D. M. Atkin, “All-silica singlemode optical fiber with photonic crystal cladding,” Opt. Lett., vol. 21, pp. 1547–1549, 1996. [28] Knight, J. C., T. A. Birks, and P. St. J. Russel, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961–963, 1997. [29] Knight, J. C., J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476–1478, 1998. [30] Koshiba, M., and K. Inoue, “Simple and efficient finite-element analysis of microwave and optical waveguides,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 371–377, 1992. [31] Koshiba, M. and K. Saitoh, “Numerical verification od degeneracy in hexagonal photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 13, pp. 1313–1318, 2001. [32] Koshiba, M., S. Maruyama, and K. Hirayama, “A vector finite element mehtod with high-order mixed-interpolation-type triangilar elements for optical waveguide problems,” J. Lightwave Technol., vol. 12, pp. 495–502, 1994. [33] Kubota, H., S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 16, pp. 182–184, 2004. [34] Lee, J, F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [35] Li, D. U., and H. C. Chang, “An efficient full-vectorial finite element modal analysis of dielectric waveguides incorporating in homogenous elements across dielectric discontinuities,” IEEE J. Quantum Electron., vol. 36, pp. 1251–1261, 2000. [36] Li, Y. F., K. Iizuka, and J. W. Y. Lit, “Equivalent-layer method for optical waveguides with a multiple quantum well structure,” Opt. Lett., vol. 17, pp. 273–275, 1992. [37] Lui, W. W., C. L. Xu, W. P. Huang, K. Yokoyama, and S. Seki, “Full-vectorial mode analysis with considerations of fueld singularities at corners of optical waveguides,” J. Lightwave Technol., vol. 17, pp. 1509–1513, 1999. [38] L¨usse, P., P. Stuwe, J. Sch¨ule, and H.-G. Unger, “Analysisof vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol., vol. 12, pp. 487–494, 1994. [39] Maliston, I. H., “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Amer., vol. 15, pp. 1205–1209, 1965. [40] Mittra, R., and ¨U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microwave and Guided Wave Lett., vol. 5, pp. 84–86, 1995. [41] Ohke, S., T. Umeda, and Y. Cho, “Equivalent-layer method for optical waveguide with a multiple quantum well structure: comment,” Opt. Lett., vol.18, pp. 1870–1872, 1993. [42] Ortigosa-Blanch, A., J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett., vol. 25, pp. 1325–1327, 2000. [43] Pekel, ¨U., and R. Mittra, “A finite-element method frequency-domain application of perfectly matched layer (PML) concept,” Microwave Opt. Technol. Lett., vol. 9, pp. 117–122, 1995. [44] Pelosi, P. M., P. Vandenbulcke, C. D. W. Wilkinson, and R. M. D. L. Rue, “Propagation characteristics of tapezoidal cross-section ridge opticl waveguides: An experimental and theoretical investigation,” Appl. Opt., vol. 17, pp. 1187– 1192, 1978. [45] Rappaport, C. M., “Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space,” IEEE Microwave Guided Wave Lett., vol. 5, pp. 90–92, 1995. [46] Rahman, B. M. A., and J. B. Davies, “Finite-element analysis of optical and microwave waveguide problems,” IEEE Trans. Microwave Theory Tech., vol. 32, pp. 20–28, 1984. [47] Reeves, W. H., J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, vol. 10, pp. 609–613, 2002. [48] Rozzi, T., G. Gerri, M. N. Huasin, and L. Zappellil, “Variational analysis od the dielectric rib waveguide using the concept of ”transition function” and including edge sinularitier,” IEEE Trans. Microwave Theory Tech., vol 39, pp. 247–256, 1991. [49] Saini, M., and E. K. Sharma, “Equivalent refractive index of MQW waveguides,” IEEE J. Quantum Electron., vol. 32, pp. 1383–1390, 1996. [50] Saitoh, K., and M. Koshiba, “Photonic bandgap fibers with high birefringence,” IEEE Photon. Technol. Lett., vol. 14, pp. 1291–1293, 2002. [51] Saitoh, K., and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett., vol. 15, pp. 1384–1386, 2003. [52] Saitoh, K., and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express, vol. 12, pp. 2027–2032, 2004. [53] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Elencron., vol. 38, pp. 927–933, 2002. [54] Saitoh, K., N. Florous, amd M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express, vol. 13, pp. 8365–8371, 2005. [55] Steel, M. J., T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Bottern, “Symmetry and degenracy in micristructured optical fibers,” Opt. Lett., vol. 26, pp. 488–490, 2001. [56] Stern, M. S., “Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles,” Inst. Elec. Eng. Proc.-J., vol. 135, pp. 56–63, 1988. [57] Stern, M. S., P. C. Kendall, and P. W. Mcllroy, “Analysis of the spectral index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc.-J., vol. 137, pp. 21–26, 1990 [58] Soldano, L. B., F. V. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multi-mode interference,” J. Lightwave Technol., vol. 10, pp. 1843–1850, 1992. [59] Soldano, L. B., M. K. Smith, A. H. de Vreede, J. W. M. van Uffelen, B. H. Verbeek, P. van Bennekom, W. H. C. de Krom, and W. van Etten, “New allpassive 4×4 planar optical phase diversity network,” in Proc. European Conf. Opt. Commun. (ECOC), 1991. [60] Sudb , A. S., “Why are accurate computations of mode fields in rectangular dielectric waveguide difficult?,” J. Lightwave Technol., vol. 10, pp. 418–419, 1992. [61] Suzuki, K., H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarization division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarization-maintaining photonic crystal fiber,” Electron. Lett., vol. 37, pp. 1399–1401, 2001. [62] Thyagarajan, K., R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett., vol. 8, pp. 1510–1512, 1996. [63] Ulrich, R., “Image formation by phase coincidences in optical waveguides,” Opt. Commun., vol. 13, pp. 259–264, 1975. [64] White, T. P., B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B, vol. 19, pp. 2322–2326, 2002. [65] Wu, T. L., and C. H. Chao, “A novel ultraflattened dispersion photonic crystal fiber,” IEEE. Photon. Technol. Lett., vol. 17, pp. 67–69, 2005.[66] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, “Efficient and accurate vector mode calculations by beam propagation method,” J. Lightwave Techmol., vol. 11, pp. 1209–1215, 1993. [67] Xu, C. L., W. P. Huang, and S. K. Chaudhuri, “Full vectorial mode calculations by finite difference method”, Inst. Elec. Eng. Proc.-J., vol. 141, pp. 281–286, 1994. [68] Yamauchi, J., G. Takahashi, and H. Nakano, “Full-vectorial beam-propagation method based on Mckee-Mitchell scheme with improved finite-difference formula,” J. Lightwave Technol., vol. 16, pp. 2458–2464, 1998. [69] Yang, S., Y. Zhang, X. Peng, Y. Lu, S. Xie, J. Li, W. Chen, Z. Jiang, J. Peng, and H. Li, “Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field,” Opt. Express, vol. 14, pp. 3015–3023, 2006. [70] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations on isotropic media,” IEEE Trans. Antenna Propagat., vol. 14, pp. 302–307, 1966. [71] Yu, C.-P., and H.-C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron., vol. 36, pp. 145–163, 2004. [72] Yu, C.-P., and H.-C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” J. Opt. Soc. Amer., vol. 12, pp. 6165–6176, 2004. [73] Yu, C.-P., and H.-C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystal fibers,” Opt. Express, vol. 12, pp 1379–1408, 2004. [74] Zucker, J. E., K. L. Jones, T. H. Chiu, and K. Brown-Goebeler, “Strained quantum wells for polarization-independent electropic waveguide switches,” J. Lightwave Technol., vol. 10, pp. 1926–1930, 1992. [75] Zhu, Z., and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express, vol.10, pp. 853–864, 2002.
|