跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾怡燕
研究生(外文):Yi-Yen Chung
論文名稱:利用共平面電磁能隙結構達成電源層雜訊抑制之特性分析與設計
論文名稱(外文):Analysis and Design of Coplanar-EBG Structures to Suppress Ground Bounce Noise in High-Speed Circuits
指導教授:吳瑞北
指導教授(外文):Ruey-Beei Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:89
中文關鍵詞:電磁能隙結構電源層雜訊抑制信號完整度電源完整度
外文關鍵詞:EBGGround Bounce NoiseSIPI
相關次數:
  • 被引用被引用:3
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於共平面式電磁能隙結構 (Coplanar Electromagnetic Band-Gap Structure, Coplanar-EBG),本論文首次提出藉由平行金屬板共振腔的觀點來釐清其工作原理與傳播機制,說明其於一般多層板封裝電路中有效的層疊佈局方式,以及決定其截止帶之下緣與上緣的機制。
此外,考量實際封裝電路板複雜的穿層與佈線結構,任意激發源位置對其有效截止頻帶的效應成為非常重要的課題,本文將加以分析,且為了考量效率、成本與可行性以達成符合經濟效益的設計,亦將探討共平面EBG結構佈局面積對於雜訊抑制效果的影響,作為實際佈局設計的參考。
最後,分別針對降低共振腔的耦合效應,以及單位EBG結構間金屬連接的傳導效應提出設計的概念,並結合帶拒濾波器,實現對於任意雜訊源激發位置皆有一致截止帶頻寬,且符合實際需求的共平面式電磁能隙結構,並加以實驗驗證其可行性與準確性。
For the first time to characterize the physical mechanism of Coplanar Electromagnetic Band-Gap (Coplanar-EBG) structures, the viewpoint of the parallel-plate resonance cavity is proposed in this thesis. Besides, the overall arrangement of effective stackup layout and mechanism decision of the upper-side and lower-side of stop-band are also presented.
In the realistic high-speed digital circuit, the complicate trace layout and multilayer connection by via transitions are inevitable. Thus the position effect of arbitrary noise excitation to Coplanar-EBG becomes very important and will be taken into account in this thesis. In addition, to consider the efficiency, cost, and feasibility, the effective area of Coplanar-EBG layout is analyzed to meet the economic benefits.
Finally, based on the low coupling effect between two patches at the separate resonant frequencies, a novel Coplanar-EBG structure inducing a wideband band-stop filter is proposed, designed, examined, and validated.
第一章 研究動機與簡介 ................................. 1
1.1 研究動機 .......................................... 1
1.2 文獻回顧 .......................................... 2
1.3 章節概要 .......................................... 3
1.4 貢獻 .............................................. 4
第二章 接地彈跳雜訊之成因與常見抑制方式 ............... 7
2.1 接地彈跳雜訊現象與成因 ............................ 7
2.2 接地彈跳雜訊抑制的方法與比較 ...................... 9
2.3 電磁能隙結構簡介 .................................. 11
2.3.1 內嵌式電磁能隙結構對於接地雜訊的抑制 ............ 11
2.3.2 共平面式電磁能隙結構對於接地雜訊的抑制 .......... 13
第三章 共平面式電磁能隙結構特性分析 .................... 21
3.1 激發源位置對有效頻寬的影響 ........................ 21
3.2 共平面式電磁能隙結構原理分析....................... 24
3.2.1 平行金屬板共振腔介紹 ............................ 24
3.3.2 共振腔傳播機制分析 .............................. 27
3.3 有效頻寬的決定機制 ................................ 29
3.4 佈局面積對抑制雜訊的影響 .......................... 35
3.5 層板佈局的效應 .................................... 37
3.6 實驗與模擬驗證 .................................... 40
3.6.1 驗證激發源位置對有效頻寬的影響 .................. 40
3.6.2 驗證共振腔傳播機制 .............................. 40
第四章 共平面式電磁能隙結構設計 ....................... 69
4.1 降低兩共振腔耦合效應的設計方式 .................... 69
4.2 結合帶拒濾波器降低金屬傳導效應的設計方式 .......... 71
4.3 實驗與模擬驗證 .................................... 74
第五章 結論 ........................................... 86
參考文獻 .............................................. 87
[1] International Technology Roadmap for Semiconductors. (http://www.itrs.net/)

[2] Y. Chen, Z. Wu, A. Agrawal, Y. Liu, and J. Fang, “Modeling of delta-I noise in digital electronics packaging,” in 1994 IEEE Multi-Chip Module Conf., pp. 126-131, Santa Cruz, CA, March 1994.

[3] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromagn. Compat., Vol. 40, pp. 111-119, May 1998.

[4] C. T. Wu, G. H. Shiue, S. M. Lin, and R. B. Wu, “Composite effects of reflections and ground bounce for signal line through a split power plane,” IEEE Trans. Adv. Packag., Vol. 25, pp. 297-301, May 2002.

[5] J. Choi, S. Chun, N. Na, M. Swaminathan, and L. Smith, “A methodology for the placement and optimization of decoupling capacitors for gigahertz systems,” in 13th Int’l Conf. VLSI Design, pp. 156-161, January 2000.

[6] J. M. Hobbs, H. Windlass, V. Sindaram, S. Chun, G. E. White, M. Swaminathan, and R. Tummala, “Simultaneous switching noise suppression for high speed systems using embedded decoupling,” in Proc. 51st Electronic Comp. Technol. Conf., Orlando, pp. 339-343, May, 2001.

[7] R. K. Ulrich and L. W. Schaper, Integrated Passive Component Technology, New York: IEEE and Wiley Intersci., 2003.

[8] C. T. Wu and R. B. Wu, “Two-dimensional finite-difference time-domain method combined with open boundary for signal integrity issues between isolation islands,” in IEEE 11th Topical Meeting Elect. Perform. Electron. Packag., pp. 283–286, October 2002.

[9] Y. Jeong, H. Kim, J. Kim, J. Park, and J. Kim, “Analysis of noise isolation methods on split power/ground plane of multi-layer package and PCB for low jitter mixed mode system,” in 2003 IEEE Proc. Topical Meeting on Electrical Performance of Electronic Packaging, pp. 199-202, October 2003.

[10] R. Abhari and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microwave Theory Tech., Vol. 51, pp. 1629-1639, June 2003.

[11] T. Kamgaing and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave Wireless Comp. Lett., Vol. 13, pp. 21-23, January 2003.

[12] L. Yang, Z. Feng, F. Chen, and M. Fan “A novel compact electromagnetic band-gap (EBG) structures and its application in microstrip antenna arrays,” IEEE Trans. Microwave Theory Tech., Vol. 53, pp. 183-190, January 2004.

[13] C. L. Wang, G. H. Shiue, and R. B. Wu, “EBG- enhanced split power planes for wideband noise suppression,” in IEEE 13th Topical Meeting Elect. Perform. Electro. Packag, pp. 61-64, October 2005.

[14] C. L. Wang, G. H. Shiue, W. D. Guo, and R. B. Wu, “A Systematic Design to Suppress Wideband Ground Bounce Noise in High-Speed Circuits by Electromagnetic Bandgap Enhanced Split Powers,” IEEE Trans. Microwave Theory Tech., Vol. 54, No. 12, pp. 4209-4217, December 2006.

[15] R. Coccioli, F. R. Yang, K. P. Ma , and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microwave Theory Tech., Vol. 47, No.11, November 1999.

[16] T. L. Wu, Y. H. Lin, and S. T. Chen, “A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic band-gap structures,” IEEE Microw. Compon. Lett., vol. 14, no. 7, pp. 337–339, July 2004.

[17] T. L. Wu, Y. H. Lin, T. K. Wang, C. C. Wang, and S. T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Trans. Microwave Theory Tech., Vol. 53, pp. 2935-2942, September 2005.

[18] T. L. Wu, C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, ”A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits,” IEEE Microwave Wireless Comp. Lett., Vol. 15, No. 3, pp. 174-176, March 2005.

[19] C. C. Wang, S. M. Wu, C. H. Chou, C. W. Tsai, T. K. Wang, Y. H. Lin, S. T. Chen, and T. L. Wu, “A novel embedded power plane with 10GHz stopband for simultaneous switching noise,” in Proc. 55th Electronic Comp. Technol. Conf., pp. 769-771, 2005.

[20] T. L. Wu and T. K. Wang, ”Embedded power plane with ultra-wide stop-band for simultaneously switching noise on high-speed circuits,” IEE Electronics Letters , Vol. 42, pp. 213-214, February 2006.

[21] J. Choi, V. Govind, and M. Swaminathan, “Noise suppression in ultra wide band (UWB) applications using alternating impedance electromagnetic bandgap (AI-EBG) structures,” in 2005 IEEE Proc. Topical Meeting on EUMC, Vol. 3, October 4-6, 2005.

[22] S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design, John Wiley & Sons, Inc., 2000, Chapter 1.

[23] D. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.

[24] K. B. Wu, A. S. Liu, G.. H. Shiue, C. M. Lin, and R.B. Wu, “Optimization for the locations of decoupling capacitors in suppressing the ground bounce by Genetic Algorithm”, in Progress in Electromagnetics Research Symposium (PIERS), pp. 411-415, Hangzhou, Zhejiang, China, August 22-26, 2005.

[25] S. Shahpnmlo and D. M. Romahi, “Simple and accurate circuit models for high-impedance surfaces embedded in printed circuit boards,” in IEEE Antennas and Propagation Society International Symposium, Vol. 4, pp. 3565-3568, June 2004.

[26] 王建霖,利用電磁能隙結構達成寬頻接地雜訊議制之系統化設計,國立臺灣大學碩士論文,2006年6月。

[27] High Frequency Structure Simulator Version 10.0, Ansoft Corporation. (http:// www.ansoft.com)

[28] C. A. Balanis, Antenna Theory-Analysis and Design, 2nd Edition, Chapter 14, John Wiley & Sons, Inc., 1997.

[29] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., New York, 1989.

[30] IE3D, Zeland Software, Inc.. (http://www.zeland.com)

[31] J. S. Pak, H. Kim, J. Lee, and J. Kim, “Modeling and measurement of radiated field emission from a power/ground plane cavity edge excited by a through-hole signal via based on a Balanced TLM and via coupling model,” IEEE Trans. Adv. Packag., Vol. 30, pp73-85, February 2007.

[32] M. Y. Hsieh and S. M. Wang, ”Compact and wideband microstrip bandstop filter,” IEEE Microwave Wireless Comp. Lett., Vol. 15, pp. 472-474, July 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top