跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/07/31 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王志洋
研究生(外文):Jyh-Yang Wang
論文名稱:平面波輔助邊界積分方程法應用於週期性金屬/介質結構之數值模擬
論文名稱(外文):Numerical Simulation on Periodic Metal/Dielectric Structures Using Plane-Wave-Assisted Boundary Integral-Equation Method
指導教授:江衍偉江衍偉引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:119
中文關鍵詞:平面波展開積分方程法表面電漿子
外文關鍵詞:plane-wave expansionboundary integral-equation methodsurface plasmon polariton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對具一維週期之二維電磁繞射問題提出一新穎的數值方法:平面波輔助邊界積分方程法。本方法乃基於傳統邊界積分方程法之架構,並結合平面波展開的概念,充分利用兩種數值技巧的優點。吾人藉積分方程以規範週期性結構中具複雜幾何的區域之電磁場,並以平面波的線性組合描述垂直於週期方向之延伸背景中的波動行為。由於以自由空間格林函數及週期性邊界條件取代一般常用的週期性格林函數,本法可免於週期性格林函數級數展開之收斂困難。此外,基於局域線性基底展開之離散技巧,本方法之準確性與收斂性在不等分割之應用上亦得到驗證。此不等分割之應用使本法適於模擬具細微結構的電磁問題。針對表面電漿波異常穿透之相關議題,吾人藉數值模擬探討兩類含金屬材質之光柵的繞射問題。在第一類光柵(波浪狀多層結構)問題中,吾人探討了由耦合表面電漿波引起的光穿透增強效應,並將其與第二類光柵(具狹縫之金屬薄層)問題中主導增強穿透的狹縫共振效應作比較。在第二類光柵問題中,吾人解釋了由狹縫共振效應引發的增強性穿透之發生頻率與光柵結構參數間的關係,並以此光柵之其他變形的模擬結果進一步加強吾人的解釋。
A novel hybrid numerical technique is proposed for analyzing general 2D electromagnetic problems with 1D gratings. The proposed method combines the conventional boundary integral-equation method (BIEM) with the plane-wave-expansion technique, taking the benefit from either method. In the framework of the proposed method, the BIEM is in charge of formulating the major part of the problem containing the grating structure, while the plane-wave expansion is for describing the nature of the outgoing wave and truncating the computation domain in the direction perpendicular to the grating extension. The free space Green’s function with the periodic boundary condition is used to replace the commonly used periodic Green’s function for dealing with the periodicity of the problem. This circumvents the convergence difficulty of the periodic Green’s function. The performance of the PW-BIEM with the non-uniform mesh is also verified, showing the capability of the PW-BIEM in modeling the grating structure with fine geometry. With the proposed method, the transmission behavior of the wavy layered structure with a substrate-metal-cover-air architecture is investigated. The enhanced transmission due to the mechanism of the coupled surface plasmon polariton (SPP) is discussed and compared with another enhancement mechanism, cavity resonance effect, of the slit grating. For slit gratings, in addition to that of the rectangular type, the modified slit gratings are also simulated. The transmission behavior is discussed and interpreted.
1 Introduction 1
1.1 Surface Plasmon and Related Topics 1
1.1.1 Extraordinary Optical Transmission and Light Beaming 2
1.1.2 Sensor, Detector, and Optical Near-Field Microscopy 4
1.1.3 Other Related Topics 5
1.2 Methodology of SPP Investigation 5
1.3 Diffraction Issues on SPP Devices 6
1.4 Overview and Organization of the Dissertation 7
1.5 Contributions of the Present Work 9

2 Overview of Numerical Techniques for SPP Modeling 12
2.1 Fundamentals of Surface Plasmon Polaritons 12
2.2 Difference Method 15
2.3 Review of the Coupled-Wave Method 17
2.4 Unstructured-Mesh Method 21

3 Plane-Wave-Assisted Boundary Integral-Equation Method 26
3.1 Concept of the Boundary Integral-Equation Method 26
3.2 Basis Expansion and Discretization 28
3.3 Plane-Wave-Assisted Boundary Integral-Equation Method 30
3.3.1 Problem Description 31
3.3.2 Combining the Plane-Wave Expansion with the Boundary Integral Equation 32
3.4 Synthesis of the Matrix Equation 36
3.4.1 Matrix Representation of the Boundary Fields 36
3.4.2 Synthesis Details 42
3.4.3 Treatments for Boundary Junctions 49

4 Numerical Verification 63
4.1 Convergence Issue for Highly Conducting Materials 63
4.2 Performance for Real Metallic Gratings 64
4.3 Non-Uniform Mesh in PW-BIEM 65

5 Simulation Results: Diffraction Efficiency of Periodic Metal/Dielectric Structures 79
5.1 Diffraction Efficiency of Metallic Wavy Structures 79
5.2 Diffraction Efficiency of Slit Gratings 84
5.3 Diffraction Efficiency of Modified Slit Gratings 88

6 Conclusion 111
[1] Baida, F. I., D. V. Labeke, and B. Guizal, “Enhanced confined light transmission by single subwavelength apertures in metallic films,” Appl. Opt., vol. 42, pp. 6811-6815, 2003.

[2] Balanis, C. A., Advanced Engineering Electromagnetics (John Wiley & Sons, New York, 1989).

[3] Bonnand, C., J. Bellessa, C. Symonds, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” Appl. Phys. Lett., vol. 89, pp. 231119(1)-231119(3), 2006.

[4] Bonod, N., S. Enoch, L. Li, E. Popov, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express, vol. 11, pp. 482-490, 2003.

[5] Brolo, A. G., R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, vol. 20, pp. 4813-4815, 2004.

[6] Cao, Q., and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett., vol. 88, pp. 057403(1)-057403(4), 2002.

[7] Chandezon, J., D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. (Paris), vol. 11, pp. 235–241, 1980.

[8] Chen, K. M., “A mathematical formulation of the equivalence principle,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1576-1581, 1989.

[9] Crouse, D., and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express, vol. 13, pp. 7760-7771, 2005.

[10] Degiron, A., H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun., vol. 239, pp. 61-66, 2004.

[11] Dintinger, J., S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B, vol. 71, pp. 035424(1)-035424(4), 2005.

[12] Dionne, J. A., L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B, vol. 73, pp. 035407(1)-035407(9), 2006.

[13] Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667-669, 1998.

[14] Enoch, S., R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express, vol. 12, pp. 3422-3427, 2004.

[15] Falco, F., T. Tamir, and K. M. Leung, “Grating diffraction and Wood’s anomalies at twodimensionally periodic impedance surfaces,” J. Opt. Soc. Am. A, vol. 21, pp. 1621-1634, 2004.

[16] Gedney, S. D., and R. Mittra, “Analysis of the electromagnetic scattering by thick gratings using a combined FEM/MM solution,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1605-1614, 1991.

[17] Gifford, D. K. and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett., vol. 80, pp. 3679-3681, 2002.

[18] Grupp, D. E., H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures,” Appl. Phys. Lett., vol. 77, pp. 1569-1571, 2000.

[19] Halterman, K., J. Merle Elson, and Surendra Singh, “Plasmonic resonances and electromagnetic forces between coupled silver nanowires,” Phys. Rev. B, vol. 72, pp. 075429(1)-075429(6), 2005.

[20] Hessel, A., and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., vol. 4, pp. 1275-1297, 1965.

[21] Hooper, I. R., and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B, vol. 70, pp. 045421(1)-045421(14), 2004.

[22] Hubert, C., L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett., vol. 90, pp. 181105(1)-181105(3), 2007.

[23] Klein Koerkamp, K. J., S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett., vol. 92, pp. 183901(1)- 183901(4), 2004.

[24]. Kneipp, K., Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett., vol. 78, pp. 1667–1670, 1997.

[25] Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen1, “Beaming light from a subwavelength aperture,” Science, vol. 297, pp. 820-822, 2002.

[26] Li, L., “Multilayer-coated diffraction gratings: differential method of Chandezon et al. revisited,” J. Opt. Soc. Am. A, vol. 11, pp. 2816–2828, 1994.

[27] Li, L., “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A, vol. 13, pp. 1870-1876, 1996.

[28] Liu, W. C., C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett., vol. 78, pp. 685-687, 2001.

[29] Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett., vol. 86, pp. 1114-1117, 2001.

[30] Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett., vol. 90, pp. 167401(1)-167401(1), 2003.

[31] McPhedran, R. C., L. C. Botten, J. McOrist, A. A. Asatryan, C. M. de Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E, vol. 69, pp. 016609(1)-016609(16), 2004.

[32] Moharam, M. G., and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A, vol. 3, pp. 1780-1796, 1986.

[33] Muhlschlegel, P., H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science, vol. 308, pp. 1607-1609, 2005.

[34] Neviere, M., and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, New York, 2003).

[35] Ng, M. Y., and W. C. Liu, “Super-resolution and frequency-dependent efficiency of near-field optical disks with silver nanoparticles,” Opt. Express, vol. 13, pp. 9422-9430, 2005.

[36]. Nie, S. M., and S. R. Emery “Probing single molecules and single nanoparticles by surface- enhanced Raman scattering,” Science, vol. 275, pp. 1102–1106, 1997.

[37] Popov, E., M. Neviere, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A, vol. 19, pp. 33-42, 2002.

[38] Popov, E., B. Chernov, M. Nevière, and N. Bonod, “Differential theory: Application to highly conducting gratings,” J. Opt. Soc. Am. A, vol. 21, pp. 199-206, 2004.

[39] Porto, J. A., F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett., vol. 83, pp. 2845-2848, 1999.

[40] Raether, H., Surface Plasmons (Springer-Verlag, Berlin, 1988).

[41] Rayleigh, J. W. S., “On the dynamical theory of gratings,” Proc. Roy. Soc., vol. 79, pp. 399-416, 1907.

[42] Rogier, H., and D. De Zutter, “A fast converging series expansion for the 2-d periodic Green’s function based on perfectly matched layers,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1199-1206, 2004.

[43] Schroter, U., and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B, vol. 60, pp. 4992-4999, 1999.

[44] Sondergaard, T., S. I. Bozhevolnyi, and A. Boltasseva, “Theoretical analysis of ridge grating for long-range surface plasmon polaritons,” Phys. Rev. B, vol. 73, pp. 045320(1)-045320(8), 2006.

[45] Song, J. H., T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett., vol. 5, pp. 1557-1561, 2005.

[46] Specht, M., J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, “Scanning plasmon near-field Microscope,” Phys. Rev. Lett., vol. 68, pp. 476-479, 1992.

[47] Sqalli, O., I. Utke, P. Hoffmann, and F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near field optical microscopy,” J. Appl. Phys., vol. 92, pp. 1078-1083, 2002.

[48] Stockman, M. I., “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett., vol. 93, pp. 137404(1)-137404(4), 2004.

[49] Stratton, J. A., Electromagnetic Theory (McGraw-Hill, New York, 1941).

[50] Sun, S., and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett., vol. 4, pp. 1381-1384, 2004.

[51] Taflove, A., and S. C. Hagness, Computational Electrodynamics (Artech House, Boston-London, 1995).

[52] Trintinalia, L. C., and H. Ling, “Integral equation modeling of multilayered doubly-periodic lossy structures using periodic boundary condition and a connection scheme,” IEEE Trans. Antennas Propagat., vol. 52, pp. 2253-2261, 2004.

[53] van der Molen, K. L., F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett., vol. 85, pp. 4316-4318, 2004.

[54] Watanabe, K., “Study of the differential theory of lamellar gratings made of highly conducting materials,” J. Opt. Soc. Am. A, vol. 23, pp. 69-72, 2006.

[55] Wedge, S., I. R. Hooper, I. Sage, and W. L. Barnes, “Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons,” Phys. Rev. B, vol. 69, pp. 245418(1)-245418(8), 2004.

[56] Wedge, S., and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express, vol. 12, pp. 3673-3685, 2004.

[57] Wood, R. W., “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag., vol. 4, pp. 396-408, 1902.

[58] Yashiro, K., and S. Ohkawa, “Boundary element method for electromagnetic scattering from cylinders,” IEEE Trans. Antennas Propagat., vol. 33, pp. 383-389, 1985.

[59] Yasumoto, K., and K. Yoshitomi, “Efficient calculation of lattice sums for free-space periodic Green’s function,” IEEE Trans. Antennas Propagat., vol. 47, pp. 1050-1055, 1999.

[60] Yee, K. S., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1966.

[61] Zhu, Z., and T. G. Brown, “Multipole analysis of hole-assisted optical fibers,” Opt. Commun., vol. 206, pp. 333-339, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top