跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈家興
研究生(外文):Chia-Hsin Shan
論文名稱:在同調環境下的可適性圓形天線陣列波束成型技術
論文名稱(外文):Adaptive Uniform Circular Array Beamforming under Coherent Environment
指導教授:李枝宏李枝宏引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:184
中文關鍵詞:圓形天線陣列 同調
外文關鍵詞:Uniform Circular Array coherent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
ㄧ般而言,假如想要接收信號和干擾沒有相關性或者不同調,可適性天線陣列可以接收想要接收的信號,而且可以把干擾信號消除。一旦出現同調干擾將會有信號抵銷的現象。理由是在輸出功率最小化的過程中不僅抑制了干擾同時也使得同調干擾消除想要接收的信號;通常同調干擾的發生在於牽涉到多重路徑傳輸或者是智慧型干擾。

為了防止信號抵銷現象很多方法被提出來,但是這些方法只適用在均勻線性陣列(ULA),例如空間平均法(SS)與權重式空間平均法(WSS),ITAM。而在圓形天線陣列上,它的方向向量不具有vandermonde的架構,所以上述的方法不適用於圓形天線陣列。在本篇論文中,利用估計出同調干擾入射方向,同調干擾從轉換接收的資料中被削除,為了抑制不同調的干擾,藉由轉換接收資料下的最小輸出功率限制在想要接收信號的單位增益下。這裡有兩種方法,DMV和SMV。把這兩個的方法進一步的延伸到寬頻的架構中,且把這些方法實現在GSC的架構中。最後並比較在LCMV和GSC的效能。
Gernerally, if there is no correlation or incoherent between the desired signal and the interference, adaptive antenna array can receive desire signals and suppress the interference. But there will be signal cancellation in the presence of coherent interference. The reason is that the output power minimination process not only suppresses the interference but also uses the coherent interference to cancel desire signals. Coherent interference usually occur in involving mutipath propagation or smart jammer.

Many approaches, such as Spatial Smoothing, Weight Spatial Smoothing, ITAM, are proposed for solving the signal cancellation due to coherent interference, but these methods can only be applied to Uniform Linear Array. However, the direction vectors of Uniform Circular Array don’t have the vandermonde structure. The above methods can not be applied to Uniform Circular Array (UCA). In this thesis, exploiting the estimates of coherent interference incident directions, coherent interference are eliminated from the transformation of received array data , to suppress incoherent interference, the output power is minimized by the transformation of received data subject to unit gain of the desired signal. Two methods, namely DMV and SMV, are extended to the structure of the wideband UCA and are accomplished to the structure of the generalized sidelobe canceller (GSC). Finally, we compare the performance between LCMV and GSC.
目 錄
致謝……………………………………………………………………………................I
摘要…………………………………………………………………………….............III
Abstract………………………………………………………………………................V
目錄…………………………………………………………………………….............VI
第一章 緒論…………………………………………………………………...............1
1.1 研究背景……………………………………………………………........................1
1.2 研究動機……………………………………………………………........................2
1.3 論文之主要貢獻……………………………………………………........................3
1.4 論文架構……………………………………………………....................................3
第二章 圓形天線陣列信號處理之數學架構與基本概念………...............................4
2.1 圓形天線陣列基本架構及數學模型…………………………..............................4
2.1.1 窄頻圓形天線陣列……………………………………….............................4
2.1.2 寬頻圓形天線陣列……………………………………….............................6
2.1.2.1 寬頻天線陣列的基礎架構…………………………………………6
2.1.2.2 寬頻信號模型………………………………………………………8
2.2 自相關矩陣特性………………………………………………..............................9
2.2.1 窄頻圓形天線陣列……………………………………….............................9
2.2.2 寬頻圓形天線陣列………………………………………...........................10
2.3 可適性波束成型技術…………………………………………............................11
2.3.1 LCMV之數學模型………………………………………...........................11
2.3.2 GSC之數學模型………………………………………...............................12
2.4 信號同調和信號抵銷現象…………………………………………....................19
第三章 窄頻圓形天線陣列在同調環境下運用強健式波束成形器……….............21
3.1 簡介…………………………………………………………………....................21
3.2 估計同調信號的入射角度方向……………………………………....................22
3.3 使用直接最小輸出功率法(Direct Minimum Variance)…………………………26
3.4 在信號子空間下使用最小輸出功率法(Subspace Minimum Variance)………...28
3.5 利用Spatial DFT將同平面圓形天線陣列化為虛擬線性天線陣列……………30
3.6 實驗模擬……………………………………………………………....................32
3.7 結論………………………………………………………………........................59
第四章 寬頻圓形天線陣列在同調環境下運用強健式波束成形器……….............60
4.1 簡介…………………………………………………………………....................60
4.2 在寬頻環境下估計同調信號的入射角度方向…………………………………61
4.3 使用直接最小輸出功率法(DMV)…………………………………………........66
4.3.1 在time domain情況下……………………………………….......................66
4.3.2 在frequecy domain情況下………………………………………………….68
4.4 在信號子空間下最小輸出功率法(SMV)……………………………………….69
4.4.1信號子空間(time domain)………………………………………....................69
4.4.2信號子空間(frequecy domain)……………………………………………….71
4.5 實驗模擬……………………………………………………………....................73
4.6 結論………………………………………………………………......................105
第五章 窄頻/寬頻圓形天線陣列在同調環境下運用廣義旁瓣消除器之強健式波束成器………..…………………………………………………….............................106
5.1 簡介…………………………………………………………………..................106
5.2 窄頻同調信號環境下的強健式修正法……………………………..................107
5.2.1 使用直接最小輸出功率法(DMV)………………………………………...107
5.2.2 在信號子空間下最小輸出功率法(SMV)………………………………....109
5.3 寬頻同調信號環境下的強健式修正法……………………………..................111
5.3.1 使用直接最小輸出功率法(DMV)……………………………………...…111
5.3.1.1 在time domain情況下…………………………………………...…111
5.3.1.2 在frequecy domain情況下…………………………………………114
5.3.2 在信號子空間下最小輸出功率法(SMV)…………………………...…….116
5.3.2.1信號子空間(time domain)………………………………………...…116
5.3.2.2信號子空間(frequecy domain)…………………………………...….118
5.4 窄頻同調環境下利用Spatial DFT將同平面圓形天線陣列化為虛擬線性天線陣列………………………………………………………………………….…120
5.5 實驗模擬……………………………………………………...……...................123
5.6 結論………………………………………………………………......................180
第六章 總結與未來研究方向……………………………………….....................181
參考文獻……………………………………………………………….......................182
[1] 蕭碩瑋,” 強健式圓形天線陣列多重波束成型技術,” 國立台灣大學電信工程學研究所碩士學位論文,June 2006.
[2] M, Hatem EI-Ayadi,Emad K. AI-Hussaini and Eid A. EI-Hakeim,’’,A Generalized Solution to the Adaptive Nulling Problem in the Presence of Coherent Jammers’’IEEE Trans. Antennas and Propagation, vol.40, no.12, pp.1568-1571, Dec. 1992.
[3] Yang-Ho Choi ,’’Improved adaptive nulling of coherent interference without spatial smoothing,’’IEEE Trans. Signal Processing, Vol.52, NO.12, pp.3464-3469, Dec. 2004.
[4] C.C. Yeh, W.D. Wang, “Coherent interference suppression. by an antenna array of arbitrary geometry,” IEEE Trans. Antennas and Propagation, Vol. 37, pp. 1317–1322, Oct. 1989.
[5] Y.-H. Choi, “Eigenstructure-based adaptive beamforming for coherent. and incoherent interference cancellation,” IEICE Trans. Commun., vol. E85-B, pp. 633–640, Mar. 2002.
[6] M. Wax and T. Kailath,“ Detection of signals by information theoretic criteria,”IEEE Trans. Acoustics, Speech, Signal Processing, Vol.ASSP-33, pp.387-392, April 1985.
[7] Mati Wax ,’’Direction finding of coherent signals via spatial Smoothing for uniform circular arrays,’’ IEEE Trans. Antennas and Propagation, vol.42, no.5, pp.613-620, May 1994.
[8] B.K. Lau and Y.H. Leung ,’’Optimum beamformers for uniform circular arrays in a correlated signal environment,’’ IEEE International Conference on. Acoustics, Speech, and Signal Processing, vol.5, pp.3093-3096, June 2000.
[9] S. Unnikrishna Pillai and Byung Ho Kwon ,’’Forward/Backward spatial smoothing techniques for coherent signal identification,’’ IEEE Trans. Acoustics, Speech, and Signal Processing, vol.37, no.1, pp.8-15, January 1989.
[10] H.L. Van Trees,Optimum Array Processing,Willey Interscience,New York,2002
[11 鄭光鵬,”在非理想情況下的強健式可適性多重波束成型技術, ”國立台灣大學電信工程學研究所碩士論文,June 2003.
[12] Ralph O. Schmidt ,’’ Multiple emitter location and signal parameter estimation ,’’ IEEE Trans. Antennas and Propagations , vol.34, no.3, pp.276-280, March 1986.
[13] Tie-Jun Shan and Thomas Kailath ,’’Adaptive beamforming for coherent signals and interference,’’ IEEE Trans. Acoustics, Speech, and Signal Processing, vol.33, no.3, pp.527-536, June 1985.
[14] 陳治宇,”強健式寬頻陣列多重波束成型技術,”國立台灣大學電信工程學研究所碩士學位論文,June 2005.
[15] Wax, M., Shan, T. J., and Kailath, T., "Spatio-Temporal Spectral Analysis by Eigenstructure Methods," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. ASSP-33, pp. 817--827, 1985.
[16] O.L.III Frost,“ An algorithm for linearly constrained adaptive array processing,"Proc. IEEE, vol.60, no.8, pp.926-935, Aug. 1972
[17] L.J. Griffiths and C.W. Jim,”An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. on Antennas and and Propagation, vol. 30, pp. 27-34, Jan. 1982.
[18] 黃克強,”廣義旁瓣消除式適應性陣列之研究,”國立台灣大學電機工程學研究所博士論文, 1991.
[19] 卓經綸,”運用廣義旁瓣消除器之強健式可適性波束成型技術,” 國立台灣大學電機工程學研究所碩士論文, June 2001.
[20] 徐振球,”在同調環境下的可適性寬頻波束成型技術,”國立台灣大學電信工程學研究所碩士學位論文,June 2005.
[21] A.M. Haimovich and Y. Bar-Ness.”An eigenanalysis interference canceller,” IEEE Trans. on Signal Processing, vol. 39, pp. 76-84, Jan.1991.
[22] Bernard Widrow and Kenneth M. Duvall and Richard P. Gooch and William C. Newman,’’Signal cancellation phenomena in adaptive antennas: causes and cures,’’ IEEE Trans. Antennas and Propagation, vol.30, no.3, pp.469-478, May 1982.
[23] S.-J. Yu and J.-H. Lee, “The statistical performance of eigenspace-based. adaptive array beamformers,” IEEE Trans. on Antennas and Propagation, vol. 44, no. 5, pp. 665–671, May 1996.
[24] P Ioannides, CA Balanis, “Uniform circular arrays for smart antennas,” IEEE Antennas and Propagation Mag. vol. 47, no. 4, pp. 192-206, 2005.
[25] R. T. Compton Jr., "The Power-Inversion adaptive array: concept and performance", IEEE Trans. Aerospace and Electronic Systems, vol.15, no.6, pp.803-814, Nov. 1979.
[26] K.Takao and N. Kikuma,”An adaptive array utilizing an adaptive spatial averaging technique for multipath environment ,” IEEE Trans. on Antennas and Propagation, vol.35, pp.1389-1396, Dec.1987.
[27] 陳逸民 ,”在非理想環境下的強健式可適性多重波束成型技術,”國立台灣大學電信工程學研究所碩士論文, June 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top