跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/15 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李振宇
研究生(外文):Jen-Yu Li
論文名稱:生醫訊號量測分析於戊巴比妥麻醉之大鼠
論文名稱(外文):Biomedical signal analysis on pentobarbital-anesthetized rat
指導教授:郭德盛郭德盛引用關係
指導教授(外文):Te-Son Kuo
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:86
中文關鍵詞:血壓腦波麻醉麻醉深度複雜度大鼠戊巴比妥鹽
外文關鍵詞:anesthesiablood pressurecomplexitydepth of anesthesiaEEGratsodium pentobarbital
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
麻醉是關於喪失知覺的一門科學,主要使用於配合外科手術的進行。另ㄧ方面,麻醉的適當與否也影響到進行動物電生理實驗時所記錄到的訊號品質。因此,本研究採用雄性大鼠(Wistar),以麻醉藥物戊巴比妥鹽溶液(sodium pentobarbital)持續靜脈注射,分析血壓波與腦波之各項參數於(1)麻醉過量致死,以及(2)麻醉後恢復過程的變化趨勢。
血壓波的資料在時域分析方面計算平均動脈壓(mean arterial pressure)、脈壓(pulse pressure)與心率(heart rate),在頻域分析方面則以傅利葉轉換(Fourier transform)及自回歸模型(autoregressive model)觀察其功率密度頻譜之變化。腦波的資料在時域分析方面計算其棘波數(number of spikes)及演算法複雜度(algorithmic complexity),在頻域分析方面則分析其頻譜邊緣頻率(spectral edge frequency)及各子頻帶功率比(subband power ratio)的變化。此外,在演算法複雜度方面,我們提出一種新的正規化的方法,使用相位亂數化(phase-randomized)的技巧增進其效能。
整體結果顯示以相位亂數化的技巧所修正的腦波複雜度分析對於麻醉深度判斷有較佳之表現,而血液動力學參數則較適於觀察生理功能的正常運作。
誌謝....................................................I
摘要...................................................II
Abstract..............................................III
Contents...............................................IV
List of Figures........................................VI
List of Abbreviations................................VIII
Chapter 1 : Introduction................................1
1.1 Motivation..........................................1
1.2 Monitoring depth of anesthesia......................1
Chapter 2 : Materials and methods.......................7
2.1 Experiment setup....................................7
2.2 Blood pressure analysis.............................9
2.3 Electroencephalograph analysis.....................11
2.3.1 Spike counting...................................11
2.3.2 Algorithmic complexity...........................12
2.3.3 Spectral edge frequency and subband power ratio..15
Chapter 3 : Results....................................21
3.1 Validation of the analysis methods.................21
3.1.1 BP spectrum estimation methods...................21
3.1.2 Normalized complexity............................22
3.2 A typical example..................................23
3.2.1 Blood pressure analysis..........................23
3.2.2 Electroencephalograph analysis...................25
3.3 Trends and template................................26
3.3.1 Overdose anesthesia..............................26
3.3.2 Recovery from anesthesia.........................28
Chapter 4: Discussion..................................59
4.1 Blood pressure analysis............................59
4.1.1 Mean arterial pressure, pulse pressure and heart rate..59
4.1.2 Spectra of different anesthetic stages...........60
4.2 Electroencephalograph analysis.....................61
4.2.1 Spike counting...................................61
4.2.2 Algorithmic complexity...........................61
4.2.3 Spectral edge frequency and subband power ratio..65
4.3 Trends and template................................66
Chapter 5: Conclusion and future works.................68
5.1 Conclusion.........................................68
5.2 Future works.......................................69
Appendix A: A brief review of anesthesia...............70
Appendix B: Pharmacological property of pentobarbital..76
Appendix C: The Lempel-Ziv complexity..................77
Appendix D: Empirical equations for prediction of survival duration and recovery time..79
References.............................................81
Abásolo, D., Hornero, R., Gómez, C., Garcia, M. and Lopez, M., 2006. Analysis of EEG background activity in Alzheimer''s disease patients with Lempel-Ziv complexity and central tendency measure. Medical Engineering and Physics. 28, 315-322.
Absalom, A. R. and Kenny, G. N. C., 2003. Closed-loop control of propofol anaesthesia using bispectral index (TM): performance assessment in patients receiving computer-controlled propofol and manually controlled remifentanil infusions for minor surgery. British Journal of Anaesthesia. 90, 737-741.
Allen, R. and Smith, D., 2001. Neuro-fuzzy closed-loop control of depth of anaesthesia. Artificial Intelligence in Medicine. 21, 185-191.
Angel, A., Arnott, R. H., Linkens, D. A. and Ting, C. H., 2000. Somatosensory evoked potentials for closed-loop control of anaesthetic depth using propofol in the urethane-anaesthetized rat. British Journal of Anaesthesia. 85, 431-439.
Bruhn, J., Roepcke, H., Rehberg, B., Bouillon, T. W. and Hoeft, A., 1999. EEG approximate entropy, but not median EEG frequency or SEF 95, correctly classifies burst suppression pattern as deep anesthesia. Anesthesiology. 91, U284-U284.
Chen, R. F., Zeng, W. T., Yen, C. T. and Tsai, M. L., 2006. Frequency response characteristic of sympathetic mediated low-frequency blood pressure fluctuations in conscious rats. Autonomic Neuroscience-Basic & Clinical. 128, 48-52.
Daniels, F. H., Leonard, E. F. and Cortell, S., 1983. Spectral analysis of arterial blood pressure in the rat. IEEE Transactions on Biomedical Engineering. BME-30, 154-159.
Daw, C. S., Finney, C. E. A. and Tracy, E. R., 2003. A review of symbolic analysis of experimental data. Review of Scientific Instruments. 74, 915-930.
Detsch, O., Vahle-Hinz, C., Kochs, E., Siemers, M. and Bromm, B., 1999. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Research. 829, 77-89.
Drummond, J. C., 2000. Monitoring depth of anesthesia - With emphasis on the application of the bispectral index and the middle latency auditory evoked response to the prevention of recall. Anesthesiology. 93, 876-882.
Eger, E. I., 1993. What is general anesthetic action? Anesthesia and Analgesia. 77, 408-409.
Elbert, T., Ray, W. J., Kowalik, Z. J., Skinner, J. E., Graf, K. E. and Birbaumer, N., 1994. Chaos and Physiology - Deterministic Chaos in Excitable Cell Assemblies. Physiological Reviews. 74, 1-47.
Faulconer, A. J., 1952. Correlation of concentrations of ether in arterial blood with electro-encephalographic patterns occurring during ether-oxygen and during nitrous oxide, oxygen and ether anesthesia of human surgical patients. Anesthesiology. 13, 361-369.
Feng, Z. and Zheng, X., 2002. Changes in complexities and power spectrum of rat electroencephalogram under various anesthesia depth. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. Houston, TX, United States. Institute of Electrical and Electronics Engineers Inc., 1, pp. 145-146.
Ferenets, R., Lipping, T., Anier, A., Jantti, V., Melto, S. and Hovilehto, S., 2006. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Transactions on Biomedical Engineering. 53, 1067-1077.
Flecknell, P. A., 1987. Laboratory animal anaesthesia : an introduction for research workers and technicians. Academic Press, London.
Furutani, E., Araki, M., Kan, S., Aung, T., Onodera, H., Imamura, M., Shirakami, G. and Maetani, S., 2004. An automatic control system of the blood pressure of patients under surgical operation. International Journal of Control, Automation and Systems. 2, 39-54.
Gan, T. J., Glass, P. S., Windsor, A., Payne, F., Rosow, C., Sebel, P., Manberg, P., Howell, S., Sanderson, I., Ray, J., Elidrissi, C., Wilkes, N., Calhoun, P., Connors, P., Alfille, P., Shapiro, L., Denman, W., Dershwitz, M., Clifford, J., Embree, P. and Sigl, J., 1997. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. Anesthesiology. 87, 808-815.
Ganong, W. F., 2001. Review of Medical Physiology. Appleton & Lange, Connecticut.
Glass, P. S., 1998. Anesthetic drug interactions: an insight into general anesthesia – its mechanism and dosing strategies. Anesthesiology. 88, 5-6.
Glass, P. S., Bloom, M., Kearse, L., Rosow, C., Sebel, P. and Manberg, P., 1997. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology. 86, 836-847.
Grassberger, P., 1986. Toward a quantitative theory of self-generated complexity. International Journal of Theoretical Physics. 25, 907-938.
Greenwald, S. D., Glass, P. S., Payne, F. B., Rosow, C. E., Sebel, P. S. and Devlin, P. H., 1998. Changes in heart rate variability predict responses during anesthesia. Anesthesiology. 89, U803-U803.
Gregory, T. K. and Pettus, D. C., 1986. An electroencephalographic processing algorithm specifically intended for analysis of cerebral electrical activity. Journal of Clinical Monitoring 2, 190-197.
Jaw, F. S., 2001. Optimal sampling of electrophysiological signals. Neuroscience Research Communications. 28, 75-84.
Jaw, F. S. and Wang, C. Y., 1993. Notes on the applications of AD card for biomedical signals. Biomedical Engineering Applications Basis Communications. 5, 773-777.
Kay, S. M. and Marple, S. L., 1981. Spectrum Analysis - a Modern Perspective. Proceedings of the IEEE. 69, 1380-1419.
Keyl, C., Schneider, A., Dambacher, M., Wegenhorst, U., Ingenlath, M., Gruber, M. and Bernardi, L., 2000. Dynamic cardiocirculatory control during propofol anesthesia in mechanically ventilated patients. Anesthesia and Analgesia. 91, 1188-1195.
Kissin, I. and Gelman, S., 1988. Components of anaesthesia. British Journal of Anaesthesia. 61, 237-242.
Klein, F. F., 1976. Waveform Analyzer Applied to Human EEG. IEEE Transactions on Biomedical Engineering. 23, 246-252.
Kohn, D. F., 1997. Anesthesia and analgesia in laboratory animals. Academic Press, San Diego.
Kolmogorov, A. N., 1965. Three approaches to the quantitative definition of information. Problems of Information Transmission. 1, 1-7.
Kuo, Y. C., Lo, S. H. and Wang, W. K., 2001. Harmonic variations of arterial pulse during dying process of rats. the 23rd annual EMBS international conference, Istanbul, Turkey, pp. 519-521.
Lamberti, P. W., Martin, M. T., Plastino, A. and Rosso, O. A., 2004. Intensive entropic non-triviality measure. Physica A: Statistical Mechanics and its Applications. 334, 119-131.
Lempel, A. and Ziv, J., 1976. On the Complexity of Finite Sequences. IEEE Transactions on Information Theory. 22, 75-81.
Lin, H. H., Beck, C. L. and Bloom, M. J., 2004. On the use of multivariable piecewise-linear models for predicting human response to anesthesia. IEEE Transactions on Biomedical Engineering. 51, 1876-1887.
Lopez-Ruiz, R., Mancini, H. L. and Calbet, X., 1995. A statistical measure of complexity. Physics Letters Section A: General, Atomic and Solid State Physics. 209, 321.
Martin-Cancho, M. F., Lima, J. R., Luis, L., Crisostomo, V., Carrasco-Jimenez, M. S. and Uson-Gargallo, J., 2006. Relationship of bispectral index values, haemodynamic changes and recovery times during sevoflurane or propofol anaesthesia in rabbits. Laboratory Animals. 40, 28-42.
Miller, A., Sleigh, J. W., Barnard, J. and Steyn-Ross, D. A., 2004. Does bispectral analysis of the electroencephalogram add anything but complexity? British Journal of Anaesthesia. 92, 8-13.
Morley, A., Derrick, J., Mainland, P., Lee, B. B. and Short, T. G., 2000. Closed loop control of anaesthesia: an assessment of the bispectral index as the target of control. Anaesthesia. 55, 953-959.
Natalucci, S., Ruggeri, P., Cerritelli, A., Picchio, V., Cogo, C. E. and Burattini, R., 2000. Power spectrum analysis of cardiovascular variability in anaesthetised SHR and WKY rats. Computers in Cardiology. Cambridge, MA, USA. Institute of Electrical and Electronics Engineers Computer Society, Los Alamitos, CA, USA, pp. 481-484.
Otto, K. and Short, C. E., 1991. Electroencephalographic Power Spectrum Analysis as a Monitor of Anesthetic Depth in Horses. Veterinary Surgery. 20, 362-371.
Pinsker, M. C., 1986. Anesthesia: a pragmatic construct. Anesthesia and Analgesia. 65, 819-827.
Prys-Roberts, C., 1987. Anaesthesia: a practical or impractical construct? British Journal of Anaesthesia. 59, 1341-1345.
Rampil, I. J., 1998. A Primer for EEG Signal Processing in Anesthesia. Anesthesiology. 89, 980-1002.
Rampil, I. J. and Laster, M. J., 1992. No Correlation between Quantitative Electroencephalographic Measurements and Movement Response to Noxious Stimuli During Isoflurane Anesthesia in Rats. Anesthesiology. 77, 920-925.
Rampil, I. J. and Matteo, R. S., 1987. Changes in EEG Spectral Edge Frequency Correlate with the Hemodynamic-Response to Laryngoscopy and Intubation. Anesthesiology. 67, 139-142.
Rapp, P. E., Cellucci, C. J., Korslund, K. E., Watanabe, T. A. A. and Jiménez-Montaño, M. A., 2001. Effective normalization of complexity measurements for epoch length and sampling frequency. Physical Review e. 6401, art-016209.
Schneider, G. and Sebel, P. S., 1997. Monitoring depth of anaesthesia. European Journal of Anaesthesiology. 14, 21-28.
Sebel, P. S., Bowles, S. M., Saini, V. and Chamoun, N., 1995. EEG Bispectrum Predicts Movement During Thiopental Isoflurane Anesthesia. Journal of Clinical Monitoring. 11, 83-91.
Senhadji, L., Wodey, E. and Ecoffey, C., 2002. Monitoring approaches in general anesthesia: A survey. Critical Reviews in Biomedical Engineering. 30, 85-97.
Shaw, N. A. and Cant, B. R., 1981. The effect of pentobarbital on central somatosensory condution time in the rat. Electroencephalography and Clinical Neurophysiology 51, 674-677.
Shue, Y. T. and Jaw, F. S., 1998. Automatic blood pressure recording system for anesthetic control. Biomedical Engineering Applications, Basis Communications. 10, 332-335.
Sleigh, J. W. and Donovan, J., 1999. Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. British Journal of Anaesthesia. 82, 666-671.
Sloan, T. B., 1998. Anesthetic effects on electrophysiologic recordings. Journal of Clinical Neurophysiology. 15, 217-226.
Smith, H. M. and Bacon, D. R., 2006. The history of anesthesia. In: Barash, P. G. et al. (Eds.), Clinical anesthesia. Lippincott Williams & Wilkins, Philadelphia.
Southorn, P. A., Warner, M. E., Sessler, A. D. and Rehder, K., 2002. The Legacy of Albert Faulconer Jr. Anesthesia and Analgesia. 95, 1108-1111.
Stauss, H. M., Mrowka, R., Nafz, B., Patzak, A., Unger, T. and Persson, P. B., 1995. Does Low-Frequency Power of Arterial Blood-Pressure Reflect Sympathetic Tone. Journal of the Autonomic Nervous System. 54, 145-154.
Stauss, H. M. and Persson, P. B., 2006. Cardiovascular variability and the autonomic nervous system. Journal of Hypertension. 24, 1902-1905.
Stoelting, R. K., 1999. Pharmacology and physiology in anesthetic practice. Lippincott-Raven, Philadelphia.
Tang, X., Reisman, S., Guo, W. and Soldan, S. A., 1997. Signal processing of systolic arterial blood pressure and heart rate variability in conscious rats. Bioengineering, Proceedings of the Northeast Conference. Durham, NH, USA. IEEE, Piscataway, NJ, USA, pp. 31-32.
Teng, T.-K., 2003, Development of a recording system for analyzing electrophysiological signals in thalamus. Master, Institute of Biomedical Engineering National Taiwan University, Taipei.
Tsai, M. L., Shann, W. C., Luo, W. R. and Yen, C. T., 2004. Wavelet-based analysis of low-frequency fluctuations of blood pressure and sympathetic nerve activity in rats. Neuroscience Letters. 358, 165-168.
Tsai, Y.-C., 2003, Measurement system for electrophysiological signals - from basic biomedical recording to clinical application. Master, Institute of Biomedical Engineering, National Taiwan University, Taipei.
Volgyesi, G. A., 1978. A brain function monitor for use during anaesthesia. Canadian Anaesthsia Society Journal 25, 427-430.
Watanabe, O., 1992. Kolmogorov Complexity and Computational Complexity. Springer-Verlag, Belin.
Watanabe, T. A. A., Cellucci, C. J., Kohegyi, E., Bashore, T. R., Josiassen, R. C., Greenbaun, N. N. and Rapp, P. E., 2003. The algorithmic complexity of multichannel EEGs is sensitive to changes in behavior. Psychophysiology. 40, 77-+.
Watt, R. C., Ehlers, K. C., Scipione, P. J., Maslana, E. S. and Hameroff, S. R., 1989. Dimensional analysis of the electroencephalogram during general anesthesia. Proceedings of the Annual Conference on Engineering in Medicine and Biology. Seattle, WA, USA. Alliance for Engineering in Medicine & Biology, Washington, DC, USA, 11 pt 6, pp. 1881-1882.
Woodbridge, P. D., 1957. Changing concepts concerning depth of anesthesia. Anesthesiology. 18, 536-550.
Wu, X. and Xu, J., 1991. Complexity and brain function. Acta Biophysica Sinica. 7, 103-106.
Xu, J., Liu, Z.-r., Liu, R. and Yang, Q.-f., 1997. Information transmission in human cerebral cortex. Physica D: Nonlinear Phenomena. 106, 363-374.
Zhang, X. S. and Roy, R. J., 1999. Predicting movement during anaesthesia by complexity analysis of electroencephalograms. Medical & Biological Engineering & Computing. 37, 327-334.
Zhang, X. S., Roy, R. J. and Jensen, E. W., 2001. EEG complexity as a measure of depth of anesthesia for patients. IEEE Transactions on Biomedical Engineering. 48, 1424-1433.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊