跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 10:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂青寯
研究生(外文):Ching-Chun Lu
論文名稱:鍺通道電晶體及鎳鍺化物隨溫度變化之關係
論文名稱(外文):Germanium Channel MOSFETs and Temperature Dependence of Nickel-Germanide Formation
指導教授:劉致為
指導教授(外文):CheeWee Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:77
中文關鍵詞:場效電晶體蕭特基能障互補式金氧半電晶體金屬鍺化物透明膜玻璃
外文關鍵詞:MOSFETSchottky-barrierCMOSmonogermanidecoated glass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們將探討場效電晶體技術發展中三種重要的議題:鍺通道蕭基位能障電晶體、金屬鍺化物、應用於互補式金氧半影像感測器透明膜玻璃切割技術。
藉由在矽基板上成長一層磊晶應變鍺,並在應變鍺上面成長矽保護層,如此的結構可實現鍺通道;而源/汲極則使用鉑金屬來形成P型電晶體的蕭基位能障。我們使用二道光罩的製程來製作元件,並且改善了先前一道光罩製程中的重大缺憾。這邊提供一些有用的概念以及參數的調整使製程的實行能夠更加完善。
用在以鍺為基底之場效電晶體的電極材質結構中,鎳鍺化合物因其多樣的優點而非常適合用作在以鍺為基底元件電極結構上。此外,我們也將說明在不同方向的鍺基底上會隨不同退火之溫度而形成不同鎳鍺化合物並討論之。
從實驗上,我們可確知透明膜玻璃在經過不同方法的雷射切割時必須做出取捨,並試著找出不同雷射切割方法的最佳化的參數,再由穿透率的量測來討論不同方法間的優劣特性。
In this thesis, three important topics for discussion for advancement of metal-oxide-semiconductor field-effect transistors (MOSFETs) technology were studied, which are germanium channel Schottky-barrier MOSFETs, Germanide, and laser cutting technology of coated glass for complementary metal-oxide-semiconductor (CMOS) image sensors.
Germanium channel was implemented by using Si-cap/ε-Ge/Si substrate and Platinum (Pt) was deposited as metal Schottky-barrier source/drain of p-type MOSFETs. The devices were fabricated by two mask process and overcame the series shortcomings from conventional one mask process. Some useful concepts and adjustments were also provided to improve the performance of the process.
Formation of electrical contacts in Ge-based MOSFETs have been studied, nickel monogermanide (NiGe) is certainly advantageous for its use as contact material in Ge-based devices. The variation of Ni/Ge structure on different orientation substrate as a function of annealing temperature will be shown and discussed.
From the experiment, it has been conferred the tradeoff of the coated glass by different laser cutting method. We will try to find the proper condition by different laser cutting method and discuss its effect on coated glass by the transmission spectrum.
Abstract (in Chinese)
Abstract (in English)
Contents
Lists of Tables
List of Figures
Chapter 1 Introduction
1.1 Motivation--------------------------------------1
1.1.1 Two mask process for Germanium channel Schottky-barrier pMOSFETs------------------------------------2
1.1.2 Temperature dependence of Nickel-Germanide formation------------------------------------------------------3
1.1.3 Laser cutting technique of coated glass for CMOS image sensor----------------------------------------4
1.2 Thesis Organization-----------------------------5
References------------------------------------------7
Chapter2 Two mask process for Germanium channel
Schottky-barrier pMOSFETs
2.1 Introduction------------------------------------8
2.2 experiment--------------------------------------11
2.2.1 Characteristics of one mask and two mask process-13
2.2.2 Substrate fabrication -------------------------15
2.2.3 Lithography-----------------------------------18
2.2.4 Source/Drain metal deposition-----------------25
2.2.5 Metal lift-off--------------------------------26
2.2.6 Oxide etching---------------------------------29
2.3 Results and Discussion--------------------------29
2.3.1 SB pMOSFET fabricated on Si substrate---------29
2.3.2 SB pMOSFET fabricated on Si/ε-Ge/Si substrate-32
2.4 Conclusion--------------------------------------35
References------------------------------------------36
Chapter 3 Temperature dependence of Nickel-Germanide formation
3.1 Introduction------------------------------------38
3.2 Experiment--------------------------------------39
3.3 Results and Discussion--------------------------40
3.3.1 Sheet resistance------------------------------40
3.3.2 Phase identification--------------------------42
3.3.3 Surface roughness-----------------------------52
3.4 Conclusion--------------------------------------57
References------------------------------------------58
Chapter 4 Laser cutting technique of coated glass for CMOS image sensor
4.1 Introduction------------------------------------60
4.2 Experiment--------------------------------------61
4.2.1 Laser and coated glass substrate--------------61
4.2.2 Laser cutting method--------------------------62
4.2.3 Transmission measurement system---------------65
4.3 Results and Discussion--------------------------66
4.3.1 Surface fracturing analysis-------------------66
4.3.2 Compare parts separated with 200passes, 300passes, and 1000passes from laser cutting-------------------69
4.3.3 Transmission analysis-------------------------71
4.4 Conclusion--------------------------------------72
References------------------------------------------73
Chapter 5 Summary and Future Work
5.1 Summary-----------------------------------------74
5.2 Future Work-------------------------------------75
[1] N. Wu, Q. C. Zhang, C. X. Zhu, C. C. Yeo, S. J. Whang, D. S. H. Chan, M. F. Li, B. J. Cho, A. Chin, and D.-L. Kwong, “Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge
substrate,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3741-3743, 2004.
[2] Rui Li, S. J. Lee, H. B. Yao, D. Z. Chi, M. B. Yu, and D.-L. Kwong, “Pt-Germanide Schottky source/drain Germanium p-MOSFET with HfO2 gate dielectric and TaN gate electrod,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 476-478, 2006.
[3] S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-channel Germanium MOSFETs with high channel mobility,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 325-326, 1989.
[4] J. Y. Spann, R. A. Anderson, T. J. Thornton, G. Harris, S. G. Thomas, and C. Tracy, “Characteristic of Nickel Germanide Thin Films for Use as Contacts to p-channel Germanium MOSFETs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 151-153, 2005.
[5] S. Zhu, A. Nakajima, Y. Yokoyama, and K. Ohkura, “Temperature Deoendence of Ni-Germanide Formed by Ni-Ge Solid-State Reaction” 5th International Workshop on Junction Technology, 2005.
[6] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “Germanium MOS capacitors incorporating ultrathin high-k gate dielectric,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 473–475, May 2002.
[7] C. Y. Lin W. J. Chen, C. H. Lai, A. Chin, and J. Liu, “Formation of Ni germano-silicide on sngle crystalline Si0.3Ge0.7-Si,” IEEE Electron Device Lett., vol. 23, no. 6, pp. 464–466, Jun. 2002.
[1] S. M. Sze and J. C. Irvin, “Resitivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K,” Solid State Electron., vol. 11, pp. 599-602, 1968.
[2] M. L. Lee and E. A. Fitzgerald, “Optimized strained Si / strained Ge dual-channel heterostructures for high mobility P- and N-MOSFETs,” IEDM Tech. Dig., pp. 429-432, 2003.
[3] H. Shang, J. O. Chu, S. Bedell, E. P. Gusev, P. Jamison, Y. Zhang, J. A. Ott, M. Copel, D. Sadana, K. W. Guarini, and M. Ieong, “Selectively formed high mobility strained Ge PMOSFETs for high performance CMOS,” IEDM Tech. Dig., pp. 157-160, 2004.
[4] M.-A. Nicolet and W.-S. Liu, “Oxidation of GeSi,” Microelectronics Eng., vol.28, pp. 185-191, 1995.
[5] K. Prabhakaran and T. Ogino, “Oxidation of Ge(100) and Ge(111) surfaces,” Surf. Sci., vol. 325, pp. 263-271, 1995.
[6] Y. Nishi, “Insulated gate field effect transistor and its manufacturing
method,” Patent 587 527, 1970.
[7] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain,” Proc. IEEE, vol. 56, no. 8, pp. 1400-1402, Aug. 1968.
[8] John M. Larson and John P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Device, vol.53, no.5, pp. 1048-1058, 2006.
[9] E. Dubois and G. Larrieu, “Measurement of low Schottky barrier heights applied to S/D metal-oxide-semiconductor field effect transistors,” J. Appl. Phys., vol. 96, no. 1, pp. 729-737, Jul. 2004.
[10] V. W. L. Chin, J. W. V. Storey, and M. A. Green, “Characteristics of p-type PtSi Schottky diodes under reverse bias,” J. Appl. Phys., vol. 68, pp. 4127-4132, Oct. 1990.
[11] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier S/D MOSFET using Ytterbium silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565-567, 2004.
[12] M. Jang, Y. Kim, J. Shin, and S. Lee, “Characterization of erbiumsilicided Schottky diode junction,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 354-356, 2005.
[13] “Front end processes,” in International Technology Roadmap for Semiconductors 2003 Edition. Austin, TX: Semiconductor Industry Assoc., 2003.
[14] Chi On Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002.
[15] S. Zhu, et al., “Schottky-barrier S/D MOSFETs with high-k gate dielectrics and metal-gate electrode,” IEEE Electron Device Lett., vol. 25, pp. 268-270, 2004.
[16] H. Shang, J. O. Chu, X. Wang, P. M. Mooney, K Lee, J. Ott, K. Rim, K. Chan, K. Guarini, M. Ieong, “Channel Design and Mobility Enhancement in Strained Germanium Buried Channel MOSFETs.” VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on 15-17 June 2004, pp. 204-205.
[1] S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-channel Germanium MOSFETs with high channel mobility,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 325-326, 1989.
[2] K. Ikeda, Y. Yamashita, N. Sugiyama, “Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation,” Appl. Phys. Lett., vol. 88, 152115, 2006.
[3] J. Y. Spann, R. A. Anderson, T. J. Thornton, G. Harris, S. G. Thomas, and C. Tracy, “Characteristic of Nickel Germanide Thin Films for Use as Contacts to p-channel Germanium MOSFETs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 151-153, 2005.
[4] H. Shang, H. Okorn-Schimdt, J. Ott, P. Kozolowski, S. Steen, E. C. Jones, H. S. P. Wong, and W. Hanesch, “Electrical characterization of germanium p-channel MOSFETs,” IEEE Electron Device Lett., vol. 24, no.3, pp. 242-244, 2003.
[5] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002.
[6] D. S. Yu, C. H. Huang, M.F. Li, B. J. Cho, and D. L. Kwong, “Al2O3 –Ge-On-Insulator n- and p- MOSFETs With Fully NiSi and NiGe dual Gates,” IEEE Electron Device Lett., vol. 25, no.3, pp. 138-140, 2004.
[7] A. Ritenour, S. Yu, M. L. Lee, N. Lu, W. Bai, A. Pitera, E. A. Fitzgerald, D. L. Kwong, and D. A. Antoniadis, “Epitaxial Strained Germanium p-MOSFETs with HfO2 Gate Dielectric and TaN Gate Electrode,” IEDM Tech. Dig., pp. 433-436, 2003.
[8] S. Zhu, R. Li, S. J. Lee, M. F. Li, A. Du, J. Singh, C. Zhu, A. Chin, and D. L Kwong, “Germanium pMOSFETs With Schottky-Barrier Germanide S/D, High-k Gate Dielectric and Metsl Gate,” IEEE Electron Device Lett., vol. 26, no.2, pp. 81-83, 2005.
[9] D. Z. Chi, R. T. P. Lee, S. J. Chua, S. J. Lee, S. Ashok, and D. L. Kwong, “Current-voltage characteristics of Schottky barriers with barrier heights larger than the semiconductor band gap : The case of NiGe/ n-(001) Ge contact,” J. of Appl. Phys. Lett., vol. 97, 113706, 2005
[10] T. Jarmar, “High-Resolution Studies of Silicide-films for Nano IC-Component,” Acta Universitatis Upsaliensis, 2005.
[11] JCPDS diffraction file 07-0297 (NiGe).
[12] S. Zhu, A. Nakajima, Y. Yokoyama, and K. Ohkura, “Temperature Deoendence of Ni-Germanide Formed by Ni-Ge Solid-State Reaction” 5th International Workshop on Junction Technology, 2005.
[13] S. L. Zhang, M. Ostling, “Metal Silicides in CMOS Technology: Past, Present and Future Trends,” Critical Reviews in Solid State and Materials Sciences, 28, 1, 2003.
[14] F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, and J. L. Labar, “Simultaneous growth of Ni5Ge3 and NiGe by reaction of Ni film with Ge,” Appl. Phys. Lett., vol. 89, 131920, 2006.
[15] R. T. P. Lee, D. Z. Chi, M.Y. Lai, N. L. Yakovlev, and S. J. Chua, “Effects of Incorporation in Ni on Silicidation Reaction and Structural/Electrical Properties of NiSi,” Electrochem. Soc. 151, G642,2004.
[16] S. Gaudet, C. Lavoie, C. Detavernier, and P. Desjardins, “Germanide phase formation and texture,” 3rd International SiGe Technology and Device Meeting (ISTDM), New Jersey, May 15-17, pp. 22. 2006.
[17] J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetics of Ni/a-Ge bilayer reactions,” Thin Solid Films, Vol. 253, pp.456-461, 1994.
[1] R. H. Patil, “Thermal Modeling of Laser Drilling and Cutting of Engineering Materials,” Faculty of the Graduate College of the Oklahoma State University, 2005.
[2] G. Chryssolouris, “Laser machining-theory and practice,” Mechanical Engineering Series Springer-Verlag, 1991.
[3] U. Paek, and F. Gagliano, “Thermal Analysis of Laser Drilling Processes,” IEEE Journal of Quantum Electronics, 8, pp. 112-119, 1972.
[4] A.F.H. Kaplan, “An analytical model of metal cutting with a laser beam,” Journal of Applied Physics 79, pp. 2198-2208, 1996.
[5] http://www.alu-info.dk/Html/alulib/modul/A00601.htm
[6] Duan, J., Man, H.C., and T.M. Yue, “Modeling the laser fusion cutting process: I. Mathematical modeling of the cut kerf geometry for laser fusion cutting of thick metal,” Journal of Physics D: Applied Physics 34, pp. 2127-2134, 2001.
[7] http://www.thefabricator.com/Articles/Fabricating_Article.cfm?ID=172
[8] Prusa, J.M., Venkitachalam, G., and P.A. Molian, “Estimation of heat conduction losses in laser cutting,” Int. Journal of Machine Tools and Manufacture 39, pp. 431-458, 1999.
[9] Komanduri, R. and Z.B. Hou, “Generalized solutions for stationary /moving plane heat source problems in manufacturing and tribology,” International Journal of Heat and Mass Transfer 43, pp. 1679-1698, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top