|
[1] N. Wu, Q. C. Zhang, C. X. Zhu, C. C. Yeo, S. J. Whang, D. S. H. Chan, M. F. Li, B. J. Cho, A. Chin, and D.-L. Kwong, “Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3741-3743, 2004. [2] Rui Li, S. J. Lee, H. B. Yao, D. Z. Chi, M. B. Yu, and D.-L. Kwong, “Pt-Germanide Schottky source/drain Germanium p-MOSFET with HfO2 gate dielectric and TaN gate electrod,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 476-478, 2006. [3] S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-channel Germanium MOSFETs with high channel mobility,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 325-326, 1989. [4] J. Y. Spann, R. A. Anderson, T. J. Thornton, G. Harris, S. G. Thomas, and C. Tracy, “Characteristic of Nickel Germanide Thin Films for Use as Contacts to p-channel Germanium MOSFETs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 151-153, 2005. [5] S. Zhu, A. Nakajima, Y. Yokoyama, and K. Ohkura, “Temperature Deoendence of Ni-Germanide Formed by Ni-Ge Solid-State Reaction” 5th International Workshop on Junction Technology, 2005. [6] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “Germanium MOS capacitors incorporating ultrathin high-k gate dielectric,” IEEE Electron Device Lett., vol. 23, no. 5, pp. 473–475, May 2002. [7] C. Y. Lin W. J. Chen, C. H. Lai, A. Chin, and J. Liu, “Formation of Ni germano-silicide on sngle crystalline Si0.3Ge0.7-Si,” IEEE Electron Device Lett., vol. 23, no. 6, pp. 464–466, Jun. 2002. [1] S. M. Sze and J. C. Irvin, “Resitivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K,” Solid State Electron., vol. 11, pp. 599-602, 1968. [2] M. L. Lee and E. A. Fitzgerald, “Optimized strained Si / strained Ge dual-channel heterostructures for high mobility P- and N-MOSFETs,” IEDM Tech. Dig., pp. 429-432, 2003. [3] H. Shang, J. O. Chu, S. Bedell, E. P. Gusev, P. Jamison, Y. Zhang, J. A. Ott, M. Copel, D. Sadana, K. W. Guarini, and M. Ieong, “Selectively formed high mobility strained Ge PMOSFETs for high performance CMOS,” IEDM Tech. Dig., pp. 157-160, 2004. [4] M.-A. Nicolet and W.-S. Liu, “Oxidation of GeSi,” Microelectronics Eng., vol.28, pp. 185-191, 1995. [5] K. Prabhakaran and T. Ogino, “Oxidation of Ge(100) and Ge(111) surfaces,” Surf. Sci., vol. 325, pp. 263-271, 1995. [6] Y. Nishi, “Insulated gate field effect transistor and its manufacturing method,” Patent 587 527, 1970. [7] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schottky barrier contacts for source and drain,” Proc. IEEE, vol. 56, no. 8, pp. 1400-1402, Aug. 1968. [8] John M. Larson and John P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Transactions on Electron Device, vol.53, no.5, pp. 1048-1058, 2006. [9] E. Dubois and G. Larrieu, “Measurement of low Schottky barrier heights applied to S/D metal-oxide-semiconductor field effect transistors,” J. Appl. Phys., vol. 96, no. 1, pp. 729-737, Jul. 2004. [10] V. W. L. Chin, J. W. V. Storey, and M. A. Green, “Characteristics of p-type PtSi Schottky diodes under reverse bias,” J. Appl. Phys., vol. 68, pp. 4127-4132, Oct. 1990. [11] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier S/D MOSFET using Ytterbium silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565-567, 2004. [12] M. Jang, Y. Kim, J. Shin, and S. Lee, “Characterization of erbiumsilicided Schottky diode junction,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 354-356, 2005. [13] “Front end processes,” in International Technology Roadmap for Semiconductors 2003 Edition. Austin, TX: Semiconductor Industry Assoc., 2003. [14] Chi On Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002. [15] S. Zhu, et al., “Schottky-barrier S/D MOSFETs with high-k gate dielectrics and metal-gate electrode,” IEEE Electron Device Lett., vol. 25, pp. 268-270, 2004. [16] H. Shang, J. O. Chu, X. Wang, P. M. Mooney, K Lee, J. Ott, K. Rim, K. Chan, K. Guarini, M. Ieong, “Channel Design and Mobility Enhancement in Strained Germanium Buried Channel MOSFETs.” VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on 15-17 June 2004, pp. 204-205. [1] S. C. Martin, L. M. Hitt, and J. J. Rosenberg, “p-channel Germanium MOSFETs with high channel mobility,” IEEE Electron Device Lett., vol. 10, no. 7, pp. 325-326, 1989. [2] K. Ikeda, Y. Yamashita, N. Sugiyama, “Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation,” Appl. Phys. Lett., vol. 88, 152115, 2006. [3] J. Y. Spann, R. A. Anderson, T. J. Thornton, G. Harris, S. G. Thomas, and C. Tracy, “Characteristic of Nickel Germanide Thin Films for Use as Contacts to p-channel Germanium MOSFETs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 151-153, 2005. [4] H. Shang, H. Okorn-Schimdt, J. Ott, P. Kozolowski, S. Steen, E. C. Jones, H. S. P. Wong, and W. Hanesch, “Electrical characterization of germanium p-channel MOSFETs,” IEEE Electron Device Lett., vol. 24, no.3, pp. 242-244, 2003. [5] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “A sub-400°C Germanium MOSFET technology with high-k dielectric and metal gate,” IEDM Tech. Dig., pp. 437-440, 2002. [6] D. S. Yu, C. H. Huang, M.F. Li, B. J. Cho, and D. L. Kwong, “Al2O3 –Ge-On-Insulator n- and p- MOSFETs With Fully NiSi and NiGe dual Gates,” IEEE Electron Device Lett., vol. 25, no.3, pp. 138-140, 2004. [7] A. Ritenour, S. Yu, M. L. Lee, N. Lu, W. Bai, A. Pitera, E. A. Fitzgerald, D. L. Kwong, and D. A. Antoniadis, “Epitaxial Strained Germanium p-MOSFETs with HfO2 Gate Dielectric and TaN Gate Electrode,” IEDM Tech. Dig., pp. 433-436, 2003. [8] S. Zhu, R. Li, S. J. Lee, M. F. Li, A. Du, J. Singh, C. Zhu, A. Chin, and D. L Kwong, “Germanium pMOSFETs With Schottky-Barrier Germanide S/D, High-k Gate Dielectric and Metsl Gate,” IEEE Electron Device Lett., vol. 26, no.2, pp. 81-83, 2005. [9] D. Z. Chi, R. T. P. Lee, S. J. Chua, S. J. Lee, S. Ashok, and D. L. Kwong, “Current-voltage characteristics of Schottky barriers with barrier heights larger than the semiconductor band gap : The case of NiGe/ n-(001) Ge contact,” J. of Appl. Phys. Lett., vol. 97, 113706, 2005 [10] T. Jarmar, “High-Resolution Studies of Silicide-films for Nano IC-Component,” Acta Universitatis Upsaliensis, 2005. [11] JCPDS diffraction file 07-0297 (NiGe). [12] S. Zhu, A. Nakajima, Y. Yokoyama, and K. Ohkura, “Temperature Deoendence of Ni-Germanide Formed by Ni-Ge Solid-State Reaction” 5th International Workshop on Junction Technology, 2005. [13] S. L. Zhang, M. Ostling, “Metal Silicides in CMOS Technology: Past, Present and Future Trends,” Critical Reviews in Solid State and Materials Sciences, 28, 1, 2003. [14] F. Nemouchi, D. Mangelinck, C. Bergman, G. Clugnet, P. Gas, and J. L. Labar, “Simultaneous growth of Ni5Ge3 and NiGe by reaction of Ni film with Ge,” Appl. Phys. Lett., vol. 89, 131920, 2006. [15] R. T. P. Lee, D. Z. Chi, M.Y. Lai, N. L. Yakovlev, and S. J. Chua, “Effects of Incorporation in Ni on Silicidation Reaction and Structural/Electrical Properties of NiSi,” Electrochem. Soc. 151, G642,2004. [16] S. Gaudet, C. Lavoie, C. Detavernier, and P. Desjardins, “Germanide phase formation and texture,” 3rd International SiGe Technology and Device Meeting (ISTDM), New Jersey, May 15-17, pp. 22. 2006. [17] J. K. Patterson, B. J. Park, K. Ritley, H. Z. Xiao, L. H. Allen, and A. Rockett, “Kinetics of Ni/a-Ge bilayer reactions,” Thin Solid Films, Vol. 253, pp.456-461, 1994. [1] R. H. Patil, “Thermal Modeling of Laser Drilling and Cutting of Engineering Materials,” Faculty of the Graduate College of the Oklahoma State University, 2005. [2] G. Chryssolouris, “Laser machining-theory and practice,” Mechanical Engineering Series Springer-Verlag, 1991. [3] U. Paek, and F. Gagliano, “Thermal Analysis of Laser Drilling Processes,” IEEE Journal of Quantum Electronics, 8, pp. 112-119, 1972. [4] A.F.H. Kaplan, “An analytical model of metal cutting with a laser beam,” Journal of Applied Physics 79, pp. 2198-2208, 1996. [5] http://www.alu-info.dk/Html/alulib/modul/A00601.htm [6] Duan, J., Man, H.C., and T.M. Yue, “Modeling the laser fusion cutting process: I. Mathematical modeling of the cut kerf geometry for laser fusion cutting of thick metal,” Journal of Physics D: Applied Physics 34, pp. 2127-2134, 2001. [7] http://www.thefabricator.com/Articles/Fabricating_Article.cfm?ID=172 [8] Prusa, J.M., Venkitachalam, G., and P.A. Molian, “Estimation of heat conduction losses in laser cutting,” Int. Journal of Machine Tools and Manufacture 39, pp. 431-458, 1999. [9] Komanduri, R. and Z.B. Hou, “Generalized solutions for stationary /moving plane heat source problems in manufacturing and tribology,” International Journal of Heat and Mass Transfer 43, pp. 1679-1698, 2000.
|