跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 21:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許勝賓
研究生(外文):Sheng-Pin Hsu
論文名稱:以解析模型為主運用Mathcad估算VRM之半導體切換功率損耗
論文名稱(外文):Mathcad Estimation of Semiconductor Switch Power Losses of Voltage Regulator Modules Based on Analytical Modeling
指導教授:陳德玉
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:81
中文關鍵詞:功率金氧半場效電晶體電壓調節模組解析模型功率損耗寄生電感
外文關鍵詞:Power MOSFETanalytical modelVRMpower lossparasitic inductance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:638
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著微處理器和晶片組的快速進步,使得電壓調節模組(Voltage Regulator Modules,VRM)設計開發,面臨相當大的挑戰,必須思考如何達成小體積高效率的技術,其中提高切換頻率是明顯的技術趨勢,因此,Power MOSFET切換功率損耗的比重會提高,所以,預測電路功率損耗的工作,將是設計開發的重要工作。
理論分析方面,先介紹三種功率損耗分析模型技術,其中的解析模型特性,很適合電路開發階段的大量資料處理,並且為符合高切換頻率的趨勢,必須考慮寄生元件的變化影響,因此,使用由Y. Ren等人所提出與實際驗證之Power MOSFET損耗解析模型,來當成理論架構背景,本論文的主旨:將此精確的Power MOSFET功率損耗解析模型,轉成實用之分析與設計的工具。
在模擬驗證方面,利用Mathcad數學模擬軟體,將大量的數學方程式與MOSFET參數電腦化,再以實際的同步整流降壓電路為例,說明模擬工具的使用流程步驟,並分析寄生電感對功率損耗分佈的影響。
最後,總結本論文的成果,並說明未來的工作方向。
Power efficiency is one of the most critical considerations in the voltage regulator modules (VRM) for computer central processor applications. These losses are becoming even more significant now as the tendency of the switching frequency is getting higher. This is the focus of thesis. Among the various loss components, it is generally true that the switching power losses associated with the various power semiconductor device are most difficult to estimate accurately.
The thesis starts with a review of several means to estimate the losses and concludes with the choice of the analytical differential equation-based model first reported by Y. Ren etc. This method is a compromise of accuracy and user friendliness. An example of a practical VRM buck converter was used to illustrate the procedures for estimating the losses and converter efficiency. The equations and the procedure were computerized in a Mathcad program for the ease of the users. Nonlinear parasitic capacitor effects of power MOSFETs, temperature effects of conduction voltage drops were taken into considerations. All the parameters of the semiconductor devices can be obtained from manufactors'' datasheet. The parasitic inductances of the devices and the printed circuit board are also taken into consideration.
This program should be helpful in evaluating the power losses and the voltage rating of the power semiconductor devices.
誌謝.................................................. I
中文摘要.............................................. II
英文摘要..............................................III
目錄.................................................. V
圖目錄................................................ IX
表目錄................................................ XIII
符號表................................................ XIV
第一章 緒論........................................... 1
1.1 研究動機與目的.................................... 1
1.2 功率損耗分析模型種類.............................. 2
1.3 內容大綱.......................................... 3
第二章 傳統的切換損耗解析模型......................... 4
2.1 電阻性負載切換模式................................ 4
2.2 電感性負載切換模式................................ 5
2.3 導通切換程序...................................... 6
2.4 截止切換程序...................................... 12
2.5 閘極電荷與切換損耗的探討.......................... 17
第三章 精確的Power MOSFET切換損耗解析模型............. 20
3.1 寄生元件的特性與模型.............................. 20
3.1.1 寄生電感的特性.................................. 21
3.1.2 非線性寄生電容模型.............................. 22
3.2 電路切換解析模型.................................. 27
3.3 導通切換程序...................................... 29
3.3.1 導通延遲週期.................................... 29
3.3.2 主要切換週期.................................... 30
3.3.3 汲極電流線性上升週期............................ 34
3.3.4 導通振鈴週期.................................... 35
3.3.5 導通切換程序的特性.............................. 39
3.4 截止切換程序...................................... 39
3.4.1 截止延遲週期.................................... 40
3.4.2 汲源電壓上升週期................................ 41
3.4.3 汲極電流下降週期................................ 42
3.4.4 截止振鈴週期.................................... 44
3.4.5 截止切換程序的特性.............................. 46
第四章 電路功率損耗模型之參數設計..................... 47
4.1 電路之穩態方程式與波形圖.......................... 47
4.2 電路之穩態功率損耗................................ 48
4.2.1 MOSFET穩態導通功率損耗.......................... 49
4.2.2 被動元件的功率損耗.............................. 49
4.2.3 閘極驅動器的功率損耗............................ 50
4.3 參數資料與Mathcad模擬的說明....................... 51
4.3.1 汲源導通阻抗.................................... 52
4.3.2 順向轉導的參數設計.............................. 52
4.3.3 寄生二極體的特性參數............................ 54
4.4 小結.............................................. 55
第五章 模擬分析與結果................................. 56
5.1 Mathcad模擬工具的使用流程......................... 56
5.2 Mathcad的電路模擬結果............................. 63
5.2.1 非線性寄生電容.................................. 63
5.2.2 導通切換程序.................................... 64
5.2.3 截止切換程序.................................... 65
5.2.4 功率損耗分佈與效率.............................. 66
5.2.5 解析模型的功率損耗比較.......................... 68
5.3 電路測試條件與功率損耗的關係...................... 69
5.3.1 輸出負載電流的變化.............................. 69
5.3.2 切換頻率的變化.................................. 70
5.3.3 輸入電壓的變化.................................. 71
5.4寄生電感的影響..................................... 73
第六章 結論與未來發展................................. 78
6.1 結論.............................................. 78
6.2 未來發展.......................................... 78
參考資料.............................................. 79
[1] J. Sun, M. Xu, Y. Ying, and F. C. Lee, “High Power Density, High Efficiency System Two-Stage Power Architecture for Laptop Computers,” in Proc. IEEE PESC conf., pp. 231-237, 2006.
[2] Y. Ren, M. Xu, K. Yao, Y. Meng, F. C. Lee, and J. Guo, “Two-stage approach for 12 V VR,” in Proc. IEEE APEC Conf., vol. 2, pp. 1306-1312, 2004.
[3] C. Buttay, H. Morel, B. Allard, P. Lefranc, and O. Brevet, “Model requirements for simulation of low-voltage MOSFET in automotive applications,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 613-624, May. 2006.
[4] A. Castellazzi, Y. C. Gerstenmaier, R. Kraus, and G. K. M. Wachutka, “Reliability analysis and modeling of power MOSFETs in the 42-V-powernet,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 603-612, May. 2006.
[5] R. Elferich, T. Lopez, and N. Koper, “Accurate behavioural modeling of power MOSFETs based on device measurements and FE-simulations,” in Proc. IEEE power electronics and applications, European conference, 2005.
[6] Y. Ren, M. Xu, J. Zhou, and F. C. Lee, “Analytical loss model of power MOSFET,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 310-319, March. 2006.
[7] Y. Xiao, H. Shah, T. P. Chow, and R. J. Gutmann, “Analytical modeling and experimental evaluation of interconnect parasitic inductance on MOSFET switching characteristics,” in Proc. IEEE APEC conf., pp. 516-521, 2004.
[8] Y. Bai, Y. Meng, A. Q. Huang, and F. C. Lee, “A novel model for MOSFET switching loss calculation,” in Proc. IEEE IPEMC conf., vol. 3, pp. 1669-1672, 2004.
[9] Y. Ren, M. Xu, F. C. Lee, and P. Xu, “The optimal bus voltage study for 12V two-stage VR based on an accurate analytical loss model,” in Proc. IEEE PESC conf., pp. 4319-4324, 2004.
[10] K. S. Oh, “MOSFET basics,” Fairchid Semiconductor, Application Note, an9010, 2000.
[11] J. Brown, G. Moxey, “Power MOSFET Basics:Understanding MOSFET characteristics associated with the figure of merit,” Vishay Siliconix, Application Note, an605, 2003.
[12] J. Brown, “Power MOSFET Basics:Understanding Gate Charge and Using It To Assess Switching Performance,” Vishay Siliconix, Application Note, an608, 2004.
[13] Infineon IPD09N03LA Datasheet, http://www.infineon.com/upload/Document/IPD09N03LA_Rev2.0_G.pdf
[14] Y. Ren, “High frequency , high efficiency two-stage approach for future microprocessors,” Ph.D. thesis, Virginia Polytechnic Institute and State University, April 2005.
[15] M. Pavier, A. Sawle, A. Woodworth, R. Monteiro, J. Chiu, and C. Blake, “High frequency DC:DC power conversion: the influence of package parasitics,” in Proc. IEEE APEC conf., vol. 2, pp. 699-704, 2003
[16] T. Lopez, T. Duerbaum, T. Tolle, R. Elferich, “ PCB layout inductance modeling based on a time domain measurement approach,” in Proc. IEEE APEC conf., vol. 3, pp. 1870-1876, 2004.
[17] G. Nobauer, D. Ahlersr, J. Ruiz-Sevillanno, “A method to determine parasitic inductances in buck converter topologies” Infineon, Application Note, 2004.
[18] R. Maimo-uni, H. Tranduc, P. Rossel, D. Allain, and M. Napieralska. “Spice model for TMOS power MOSFETs,” Motorola Seminconductor, Application Note, an1043, 2005.
[19] R. Elferich, and T. Lopez, “Impact of gate voltage bias on reverse recovery losses of power MOSFET,” in Proc. IEEE APEC conf., pp. 1390-1395, 2006.
[20] T. Tolle, T. Duerbaum, R. Elferich, “ De-embedding of reverse recovery losses in fast switching VRM applications,” in Proc. IEEE APEC conf., vol. 2, pp. 958-963, 2003.
[21] Q. Zhao, and G. Stojcic, “Characterization of Cdv/dt induced power loss in synchronous buck dc-dc converters,” in Proc. IEEE APEC conf., vol. 1, pp. 292-297, 2004.
[22] A. Elbanhawy, “The Making of the Perfect MOSFET,” in Proc. IEEE PESC conf., pp. 2443-2447, 2006.
[23] A. D. Valdivieso, “A method to estimate the optimum components in a high current buck converter design,” Infineon, Application Note, 2004.
[24] International Rectifier, IRF7811A Datasheet, http://www.irf.com/product-info/datasheets/data/irf7811a.pdf
[25] L. Balogh, “Design and application guide for high speed MOSFET gate drive circuit,” Texas Instruments Power Supply Design Seminar SEM-1400, pp. 2/1-2/39, 2004.
[26] Renesas HAT2168H Datasheet, http://documentation.renesas.com/eng/products/transistor/rej03g0046_hat2168h.pdf
[27] Y. Gao, A. Q. Huang, and Y. Gao, “Trench power JFET with integrated junction barrier schottky diode,” in Proc. IEEE IAS conf., vol. 1, pp. 359-363, 2006.
[28] G. Belverde, A. Magri, M. Melito, S. Musumeci, R. Pagano, and A. Raciti, “Efficiency improvement of synchronous buck converter by Integrated schottky diode in low-voltage MOSFETs,” in Proc. IEEE ISIE conf., vol. 2, pp. 429-434, 2005.
[29] S. Ono, Y. Yamaguchi, N. Matsuda, A. Takano, M. Akiyama, Y. Kawaguchi, and A. Nakagawa. “High density MOSBD (UMOS with built-in trench schottky barrier diode) for synchronous buck converters,” in Proc. IEEE ISPSD conf., 2006.
[30]National semiconductor LM276 Datasheet,
http://cache.national.com/ds/LM/LM2725.pdf
[31] Renesas HAT2165H Datasheet, http://documentation.renesas.com/eng/products/transistor/rej03g0004_hat2165h.pdf
[32] Y. Kawaguchi, T. Kawano, H. Takei, S. Ono, and A. Nakagawa, “Multi Chip Module with Minimum Parasitic Inductance for New Generation Voltage Regulator,” in Proc. IEEE ISPSD conf., pp. 371-374, 2005.
[33] F. Merienne, J. Roudet, J. L. Schanen, “ Switching disturbance due to source inductance for a power MOSFET: analysis and solutions,” in Proc. IEEE PESC conf., vol. 2, pp. 1743-1747, 1996.
[34] B. Yang, and J. Zhang, “Effect and utilization of common source inductance in synchronous rectification,” in Proc. IEEE APEC conf., vol. 3, pp. 1407-1411, 2005.
[35] W. Teulings, J. L. Schanen, and J. Roudet, “MOSFET switching behaviour under influence of PCB stray inductance,” in Proc. IEEE IAS conf., vol. 3, pp. 1449-1449, 1996
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top