跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王宗苗
研究生(外文):Tsung-Miau Wang
論文名稱:具薄型閘極介電層之矽基金氧半電容元件之特性研究暨溫度感測應用
論文名稱(外文):Characterization and Temperature Detection Application of Si-based Metal-Oxide-Semiconductor (MOS) Capacitors with Thin Dielectrics
指導教授:胡振國胡振國引用關係
指導教授(外文):Jenn-Gwo Hwu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:116
中文關鍵詞:氧半電容空乏區飽和電流穿刺效應少數載子氧化鉿
外文關鍵詞:MOS capacitorsdepeletion regionsaturation currentpercolation phenomenonminority carriershafnium oxideon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於N型矽基板上的金氧半電容而言,其飽和電流主要為電子電洞對在界面及空乏區的復合機制,但是對於P型矽基板上的金氧半電容而言, 其飽和電流受控於空乏區內電子電洞之產生與表面陷阱電荷,矽基板內缺陷,還有次氧化層。這些機制可藉由電致發光方式還有其對溫度之響應來作驗證。由於N型矽基板上的金氧半電容,電子電洞容易有復合效應,會有明顯的電致光效果,對於P型矽基板上的金氧半電容,電子電洞的產生對熱有相當明顯的響應。然而負電容的現象存在於N型矽基板上的金氧半電容,尤其在元件面積比較大,且偏壓在平帶電壓附近時候特別明顯,其原因大致上跟界面電荷之捕捉和釋放有關。 對於P型矽基板上的金氧半電容,當矽基板溫度升高,在飽和電流區域時,少數載子電子從矽基板流進氧化層,容易破壞矽基板和氧化層界面,軟性崩潰機率隨之增加。更仔細探討軟性崩潰增加的原因,乃在於當矽基板溫度升高時,正偏壓加在金氧半電容閘極,矽基板裡的少數載子的的量急遽增加,表面陷阱電荷也更加活躍,容易有穿刺效應產生(percolation effect),而且氧化層上電壓增加甚大,落在氧化層上的電場亦增加,於是容易造成金氧半電容體崩潰,不堪使用。此為當矽基板溫度增加時,電壓有重新分佈的情形,這現象對於一定厚度的氧化層,具有相當程度之破壞能力。 最後我們成功展示於三吋矽晶圓上溫度之分佈,藉由具有超薄純二氧化矽介電層的P型矽基板金氧半電容的特殊溫度效應所達成,當溫度增加時,少數載子亦增加,大致上溫度增加10°C,少數載子量也增加一倍,而電流也增加一倍,響應非常敏感且快速。但是當二氧化矽層厚度若太大,則不適用於低電壓操作。我們也作了一些改良,在二氧化矽上增添一層氧化鉿,可適合於低電壓操作。操作電壓僅有0.5伏特,飽和電流對溫度有良好響應,每當溫度升高10°C,電流即加倍。在30~90°C範圍內,穩定操作達四小時,並無元件退化現象,表示元件之穩定度實已相當足夠。在超大型的積體電路裡面,相當具有整合使用之潛力。
For MOS (n) capacitors, the saturation current is mainly attributed to the electron-hole pair recombination mechanism. But for MOS (p) capacitors, the saturation current is mainly attributed to the electron-hole pair generation mechanism, and is also controlled by interface trap densities (Dit), bulk traps, and suboxide. It can be examined by the electroluminescent (EL) method and their temperature dependencies. For the MOS (n) capacitors, because of the recombination mechanism, the EL phenomenon is easily found. However, for MOS (p) capacitors, because of the generation mechanism, the temperature response can be found. Furthermore, negative capacitance is found on a certain portion of MOS (n) C-V curves. It is probably in connection with the charge trapped and de-trapped in the interface and the charges have different phases. As the device size increasing, the negative capacitance is more obvious. For MOS (p) capacitors, the probability of soft breakdown (SBD) increases with temperature when biased in the saturation current region under substrate injection. The increase in the probability of SBD follows from the fact that increasing the temperature increases both the number of minority carriers and Dit, when the positive substrate injection region is biased. The amount of electrons near SiO2/Si interface will cause the percolation phenomenon effect. Therefore, the number of charges across the silicon dioxide increases so the voltage drop across the oxide increases, and finally SBD occurs. It is regarded as that the voltage will rearrange. The voltage rearrangement effect will damage the oxide films with a certain oxide thickness. We successfully demonstrated the temperature distribution on the 3-inch Si wafer by the conventional MOS (p) capacitors with pure SiO2 dielectrics. But when the thickness of SiO2 films increases slightly, the temperature sensitivity will decrease. It is not suitable for the application under low voltage operation. To do some improvement, the MOS (p) capacitors with hafnium oxide (HfO2) film added on SiO2 were demonstrated as reliable temperature-detecting devices for the first time. The saturation current of MOS (p) capacitor with added HfO2 film is easy to saturate within 0.5 V. Each increase of 10 °C almost doubles the saturation current. These devices are reliable even though they had been electrically stressed at various temperatures (30~90°C) for 4 hours. They are potential to be integrated into the circuits as temperature detectors for ultra large scaled integration technology
Contents Abstract (in Chinese)…………………..…………..………………………I
Abstract (in English)……………………………….……………………..II Acknowledgement………………………………………..………..………IV
Contents……………………………......….......…………………………………V
Table captions…………..…………..………..………………………….…VIII
Figure Captions…............……………….……………………..…………….. IX
Chapter 1 Introduction……………………………………………….1 1.1The development of CMOS technology and its challenge…… ……………….. ...1 1.2 The concept of MOS capacitor system………………………………………. …...4 1.2.1 Energy band diagram for the MOS capacitor..…….……………….……..4 1.2.2 Modified C-V extraction by quantum-mechanism and theoretical I-V analysis………………………………………… 5 1.2.3 Charges in silicon dioxide……...……………………………………….....5 1.3 On chip temperature detection for devices with Si-based substrate and the application of high-k material………………………………..6 1.4 Summary…………………………………………………………….…………….7 Chapter 2 Characterization of the MOS capacitors grown on N- and P-type substrates with ultra-thin oxides…………….13 2.1 Introduction………………………………………………………………………13 2.2 Experiment……………………………………………………………………….15 2.3 C-V and I-V properties…………………………………………………………...16 2.4 Conduction mechanisms of MOS capacitors…………………………………….20 2.4.1 Generation and recombination current…………………………………..20
3.2 Experiment………………………………………………………….……………59 VI
2.4.2 Electroluminescent (EL) test…………………………………………….22 2.4.3 Temperature effect……………………………………………………….23 2.5 Some effects on MOS capacitors………………..……………………………… 25 2.6 Summary………………………………….………………………………………28 Chapter 3 Temperature-induced voltage drop rearrangement and its effect on oxide breakdown in MOS (p) capacitor structure……………...57 3.1 Introduction……………………………………………………………………... 57 3.3 Energy band diagrams under different substrate temperatures……………….….59 3.4 Breakdown analysis…………………………………………………………...….61 3.4.1 Time zero dielectrics breakdown (TZDB)…………………………..61 3.4.2 Breakdown statistics…………………………………….……………63 3.4.3 C-V behavior…………………………………………………………64 3.5 Summary……………………………………………………………………..…..65 Chapter 4 Enhancement of temperature sensitivity for MOS (p) tunneling temperature sensors by utilizing hafnium oxide (HfO2) film added on silicon dioxide (SiO2)…………………………76 4.1 Introduction……………………………………………………………………..76 4.2 Experiment………………………………………………………………..….....78 4.3 Temperature detection characterization…………………………………………80 4.3.1 Temperature sensor array application…..…………………………........80 4.3.2 Device characterization……………………………..…………..……...82 4.3.2.1 Energy band diagram discussion………………………….82 4.3.2.2 Analysis of temperature sensitivity……………………….83 4.3.2.3Current gain method……. ………………………………..85 4.3.2.4 Reliability test……………………………………………..86
VII
4.4 Summary………………………………………………………………………....87 Chapter 5 Conclusion and suggestion for future work………………………………..104 5.1 Conclusion in this work…………………………………………………104 5.2 Suggestion for future work………………………………………………106 References……………………………………...…………………………….108
[1] D. Kahng and M. M. M. Atalla, “Silicon dioxide field surface devices,” Device research Conf., Pittsburge, 1960.
[2] J. S. Kilby, “The invention of the integrated circuit,” IEEE Trans. Electron Devices, vol. 23, p.648, 1976.
[3] Silversmith, D. J.”NONUNIFORM LATERAL IONIC IMPURITY DISTRIBUTIONS AT Si-SiO//2 INTERFACES.” Journal of the Electrochemical Society, v. 119, p.1589, 1972.
[4] Schneider, Birger,” CMOS INTEGRATED CIRCUITS.” Elektronikcentralen (Report) ECR, n 73, p. 48, Aug, 1977. [5] ”ITRS 2007 Update Documents,” http://public.itrs.net/.
[6] G. E. Moore, “Progress in digital integrated circuit”, IEDM Tech. Dig., p. 11, 1975.
[7] Y. Taur and T. H. Ning, Fundamental of Modern VLSI Devices, Cambridge, U.K.: Cambridge Univ. Press 1998.
[8] Chaudhry, Anurag, Kumar and M. Jagadesh, “Controlling Short-Channel Effects in Deep-Submicron SOI MOSFETs for Improved Reliability: A Review, “ IEEE Transactions on Device and Materials Reliability, v 4, p 99. 2004
[9] Mutlu, Ayhan A. and Rahman, Mahmud,” Two-dimensional analytical model for
109
drain induced barrier lowering (DIBL) in short channel MOSFETs,” Conference Proceedings - IEEE SOUTHEASTCON, p 340, 2000.
[10] Ye, Qiuyi and Biesemans Serge, “Leff extraction for sub-100 nm MOSFET devices,”Solid-State Electronics, v 48, p 163, 2004
[11] Juang, Miin-Horng, Chiu, Yi-Ming,” Effects of a lightly-doped-drain (LDD) implantation condition on the device characteristics of polycrystalline-Si thin-film transistors,”Semiconductor Science and Technology, v 21, p. 291, 2006
[12] Shih, Chun-Hsing, Chen, Yi-Min and Lien, Chenhsin, “Design strategy of localized halo profile for achieving sub-50 nm bulk MOSFET,” Microelectronics Reliability, v 44, p. 1069, 2004.
[13] C. –H. Choi, K.-H. Oh, J.-S. Goo, Z. Yu, and R. W. Dutton,“Direct tunneling current for circuit simulation,” IEDM Tech. Dig., p. 735, 1999.
[14] A.Schenk and G. Heiser, “Modeling and simulation of tunneling through ultra-thin gate dielectrics,” J. Appl. Phys., vol. 81, p. 7900, 1997.
[15]A. Ghetti, E. Sangiorgi, J. Bude, T.W. Scrsch and G. Weber, “Low voltage tunneling in ultra-thin oxides: a monitor for interface states and degradation, “ IEDM Tech. Dig., p. 731, 1999.
[16] Soleimani, H.R. and Philipossian, A. “Investigation of two-step oxidation in dry oxygen and the effect of oxide thermal history on its growth properties,”Journal
110
of the Electrochemical Society, v 140, p. 1744, 1993.
[17] Yu, M.C.; Jang, S.M.; Diaz, C.H.; Yu, C.H.; Sun, S.C.; Liang, M.S. “Improvement of ultra-thin gate oxide by a novel rapid thermal oxidation process with in-situ steam generation Source,” Proceedings of SPIE - The International Society for Optical Engineering, v 3881, p 234. 1999.
[18] Paillet, P. (CEA); Herve, D.; Leray, J.L.; Devine, R.A.B. “Evidence of negative charge trapping in high temperature annealed thermal oxide,” IEEE Transactions on Nuclear Science, v 41, p. 473, 1994.
[19] K. Yang, Y. –C. King, and C. Hu, “Quantum Effect in Oxide Thickness Determination From Capacitance Measurement,” Symposium on VLSI Technology, Digest of Technical Papers, pp. 77-78, 1999.
[20] Chiou, Y.L., Gambino, J.P. and Mohammad, M. “Determination of the Fowler-Nordheim tunneling parameters from the Fowler-Nordheim plot,”Solid-State Electronics, v 45, p. 1787, 2001.
[21] Zhang, Jihua, Yang, Chuanren; Yang, Wenwei; Feng, Tao; Wang, Xi; Liu, Xianghuai,”Appearance of a knee on the Fowler-Nordheim plot of carbon nanotubes on a substrate,”Solid State Communications, v 138, p. 13, 2006.
[22] Rastogi, A.C.and Desu, S.B.,”Current conduction and dielectric behavior of high k-Y2O 3 films integrated with Si using chemical vapor deposition as a gate
111
dielectric for metal-oxide-semiconductor devices,”Journal of Electroceramics, v 13, p.121, 2004.
[23] W. J. Zhu, T. P. Ma , S. Zafar, and T. Tamagawa,” Charge Trapping in Ultrathin Hafnium Oxide,” IEEE Electron Device Lett., vol. 23, pp.597 , 2002.
[24]C. N. Liao, C. Chen and K. N. Tu,” Thermoelectric characterization of Si thin film in silicon-on-insulator wafer,” J. Appl. Phy, vol. 86, no. 86, pp. 3204, sep. 1999.
[25] Hector Sanchez, Belli Kuttanna, Tim Olson, Mike Alexander, Gian Georosa, Ross Philip and Joe Alvarez, “Thermal Management System for High Performance PowerPC Microprocessors,” in proceeding of Compcon’97, p. 325, 1997.
[26] M. Y. Doghish and F. D. Ho, “A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application,”IEEE Trans. Electron Devices, vol. 40, pp.1446-1454, Aug. 1993.
[27] M. Y. Doghish and F. D. Ho, “A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices,” IEEE Trans. Electron Devices, vol. 39, pp. 2771-2780, Dec. 1992. [28] Y.H. Shih, and J.G. Hwu, “An On-Chip Temperature Sensor by Utilizing a MOS Tunneling Diode, ” IEEE Electron Lett., June, 2001, pp. 299-301.
112
[29] Y. H. Shih, S. R. Lin, T. M. Wang, J. G. Hwu, “High sensitive and wide detecting range MOS tunneling temperature sensors for on-chip temperature detection,” IEEE Trans. Electron Devices, vol. 51, pp. 1514 – 1521, Sept. 2004.
[30] Yang, P.F.;Li, J.C.; Xie, M.X.; Yang, M.H.; He, L.; Li, K.C.; Tan, K.Z.; Zhang, J.,”Gate oxide prepared by nanometre silicon wet oxidation at low temperature for Si/SiGe PMOSFET application,” Semiconductor Science and Technology, v 16, p. 972 , 2001.
[31] Mizubayashi, W. Yoshida, Y. Murakami, H. Miyazaki, S. Hirose, M. “Statistical analysis of soft and hard breakdown in 1.9-4.8-nm-thick gate oxides,” IEEE electron device letter, vol. 25, p. 305. 2004
[32]M. Uematsu, H. Kageshima, and K. Shiraishi, “Microscopic mechanism of thermal silicon oxide growth,” Computational Materials Science. 24. 229 (2002)
[33]A. Vedda, M. Martini, and G. Spinolo, “Phosphorous implantation in silicon through thin SiO2 layers: Oxide damage and postoxidation thermal treatments,” J. Appl. Phys. 90, 5013 (2001)
[34] R.Deaton and H. Z. Massoud, “Manufacturability of rapid-thermal oxidation of silicon: Oxide thickness, oxide thickness variation, and system dependency,” IEEE Trans Semiconductor manufacturin. 5, 347 (1992)
[35] Y. Kotani and Y. Omura, “Analysis of thin oxide growth mechanisms in
113
partial-pressure rapid-thermal oxidation of silicon,” Jpn. J. Appl. Phy. 39, 4549, (2000)
[36] S. J. Robinson, S. R. Wenham, P. P. Altermatt, A. G. Aberle, and G. Heiser,” Recombination rate saturation mechanisms at oxidized surfaces of high-efficiency silicon solar cells,” J. Appl. Phys. 78, (1995)
[37]V. R. Nikitenko and J. M. Lupton, “Recombination kinetics in wide gap electroluminescent conjugated polymers with on-chain emissive defects,“J. Appl. Phys. 93, 5973 (2003)
[38]J. Kalinowski, L. C. Picciolo, H. Murata, and Z. H. Kafafi, “Effect of emitter disorder on the recombination zone and the quantum yield of organic electroluminescent diodes,” J. Appl. Phys. 89, 1866 (2001)
[39] D. V. Khramtchenkov, V. I. Arkhipov, and H. Ba¨ ssler, “Charge carrier recombination in organic bilayer electroluminescent diodes. I. Theory,” J. Appl. Phys. 81, 6954 (1997)
[40]Y.-H. Tak and H. Bassler, “Charge carrier recombination in organic bilayer electroluminescent diodes. II. Experiment,” J. Appl. Phys. 81, 6963 (1997) [41]Dokme, Ilbilge; Altindal, Semsettin; Bulbul, M. Mahir,” The barrier height inhomogeneity in Al/p-Si Schottky barrier diodes with native insulator layer,” Applied Surface Science, v 252, p. 7749 , 2006.
114
[42]C.-C. Hong and J.-G. Hwu, “Stress distribution on (100) Si wafer mapped by novel I-V analysis of MOS tunneling diodes,” IEEE Electron Device Lett. 24, 408 (2003)
[43]C.-C. Hong, W.-J. Liao, and J.-G. Hwu, “Thickness-dependent stress effect in p-type metal-oxide-semiconductor structure investigated by substrate injection current,” Appl. Phys. Lett. 82, 3916 (2003)
[44]C.-C. Hong, C.-Y. Chang, C.-Y Lee, and J.-G. Hwu, “Thermal stress at wafer contact points in rapid thermal processing investigated by repeated spike treatment before oxidation,” J. Appl. Phys, 93, 2225(2003)
[45] Soliman, L.; Duval, E.; Benzohra, M.; Lheurette, E.; Ketata, K.; Ketata, M. “Improvement of oxide thickness determination on MOS structures using capacitance-voltage measurements at high frequencies” Materials Science in Semiconductor Processing, v 4, n 1-3, p. 163, 2001,
[46] Kleff, Silvia; Bottini, Roberta; Ghidini, Gabriella, “MOS gate current characteristics and their implications for lifetime area scaling,” Proceedings of ESSDERC 2005: 35th European Solid-State Device Research Conference, v 2005, Proceedings of ESSDERC 2005: 35th European Solid-State Device Research Conference, p 391-394, 2005
[47] Gunther, Norman; Hamadeh, Emad; Niemann, Darrell; Rahman,
115
Mahmud,”Interface and gate line edge roughness effects on intra die variance in MOS device characteristics,”Device Research Conference - Conference Digest, DRC, v 2005, 63rd Device Research Conference Digest, DRC''05, p. 83, 2005. [48] E. Y. Wu and R.-P. Vollertsen, “On the Weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination-Part I: Theory, methodology, experimental techniques,” IEEE Trans. Electron Devices 49, 2131(2002).
[49]E. Y. Wu, J. Suñé, and W. Lai, “On the weibull shape factor of intrinsic breakdown of dielectric films and its accurate experimental determination-Part II: Experimental results and the effects of stress conditions,” IEEE Trans. Electron Devices 49, 2141(2002).
[50] [31] W. Mizubayashi, Y. Yoshida, H. Murakami, S. Miyazaki and M. Hirose, “Statistical analysis of soft and hard breakdown in 1.9-4.8-nm-thick gate oxides,” IEEE Electron Device Lett. 25, 305 (2004).
[51]E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, F. Martín and X. Aymerich, “Model-independent determination of the degradation dynamics of thin SiO2 films,” Microelectronics and Reliability, v 39, n 6-7, Jun, p. 891, 1999.
[52]E. M. Vogel, M. D. Edelstein and J. S. Suehle, “Defect generation and breakdown of ultrathin silicon dioxide induced by substrate hot-hole injection,” J. Appl.Phys. 90, 2338 (2001)
[53]T. Nigam, S. Martin, D. Abusch-Magder, “Temperature dependence and conduction mechanism after analog soft breakdown,” Reliability Physics Symposium Proceedings, 2003, p.417.
[54]R. Thewes, R. Brederlow, C. Schlunder and P. Wieczorek, “Device reliability in analog CMOS applications,” IEDM Tech. Dig. Int. Electron Devices Meet. 81 (1999)
[55] T. P. Chen, Stella Li, S. Fung, and K. F. Lo, “Interface Generation by FN Injection under Dynamic Oxide Field Stress,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998
[56] P. F. Lee, J. Y. Dai, K. H. Wong, H. L. W. Chan, and C. L. Choy, “Study of interfacial reaction and its impact on electric properties of Hf–Al–O high-k gate dielectric thin films grown on Si,” Appl. Phys. Lett., vol 82, pp2419-2421, Apr. 2003. [57] C. S. Kuo, J. F. Hsu, S. W. Huang, L. S. Lee, M. J. Tsai, and J. G. Hwu, “High-k Al2O3 Gate Dielectrics Prepared by Oxidation of Aluminum Film in Nitric Acid Followed by High-Temperature Annealing,” IEEE Trans. Electron Devices, vol.51, pp. 854-858, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top