跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周靖棠
研究生(外文):Ching-Tang Chou
論文名稱:應用虛擬實境平台於即時動態海面上之船舶運動模擬
論文名稱(外文):VR-based Motion Simulator for Ships on Real-time Rendered Dynamic Ocean
指導教授:傅立成傅立成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:86
中文關鍵詞:虛擬實境船舶建模海浪模擬流體力學動力學圖形處理單元海洋頻譜
外文關鍵詞:Virtual realityShip modelingOcean wave simulationhydrodynamicsdynamicsGraphics Processor UnitOcean spectrum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文以物理上的力學系統為架構,探討船在虛擬實境(virtual reality)上的建模以及運動的模擬。我們使用搭載NVIDIA GeForce Go 7400顯示卡的電腦(CPU @2.00GHz)即時的建構一個海洋表面來當做我們的虛擬場景,海浪的大小是根據地心引力及風的方向與強度來產生,在此我們引入海洋學上的波譜理論。另外,為了達到真實與即時的場景繪製,採用圖形處理單元(GPU)來協助並完成著色,同時動態海面上的反射現象與菲涅耳(Fresnel)效應也被我們所考慮。在建構船舶模型上,所受的力與力矩是根據動態海浪的流體力學理論來施予。我們提出一個新的演算法對我們的船身格化成為點,並且依據3D中的數學理論將每個點在世界座摽中定位,並根據浮力去計算船舶在海面下的體積,以及其他流體力學的受力狀況,來模擬船的運動狀態,此外這個場景也可以被我們整合在六自由度的平台上去感知真實的運動情況。
This thesis is focused on the construction of physical dynamic system about the ship modeling and motion simulation on virtual reality. We introduce the deep ocean surface constructed as our virtual environment in real-time by personal computer which is mounted NVIDIA GeForce Go 7400 graphics card and 2.00GHz CPU. We introduce an ocean spectrum theorem, so the ocean wave is created by defining the gravity and the wind. Further more, in order to obtain the real-time and realistic rendering ocean scenery, we adopt Graphics Processor Unit (GPU) hardware on shading color. The reflection phenomenon and Fresnel effect are concerned on our dynamic ocean. On ship modeling, the forces and torques are calculated from the generated dynamic waves, which are based on the hydrodynamics and transferred to our ship model. We present a new algorithm to assign points on ship hull, and apply the 3D mathematics theorem to locate each point. According to the calculation of the volume of ship below the ocean surface, we can approach the dynamics of the ship. This simulation can also be integrated with the 6 degree-of-freedom motion platform to generate realistic motion sensation.
誌謝 II
摘要 III
Abstract IV
Table of Contents V
List of Figures VII
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Related Works on Ship and Ocean wave modeling 3
1.3 Thesis Organization 7
Chapter 2 Ocean Dynamics and Rendering 8
2.1 Ocean Waves Modeling 8
2.2 Ocean Wave Parameters 11
2.2.1 Amplitude 11
2.2.2 Wavelength and Pulsation 16
2.2.3 Wave Direction 18
2.3 Ocean Rendering 19
2.3.1 Reflection and Refraction 20
2.3.2 The Fresnel Effect 23
2.3.3 Shading for The Ocean 26
Chapter 3 Ship Modeling and Dynamics 29
3.1 Preliminary Rigid Body Dynamics 29
3.1.1 Position and Orientation 29
3.1.2 The Velocity of a Rigid Body 32
3.1.3 Equations of Motion 33
3.1.4 Forward Euler Integration 35
3.2 The Ship Modeling 36
3.3 Ship Forces and Torques 39
3.3.1 Forces and Torques of Gravity and Sea Wave 41
3.3.2 The Wind Force 48
3.3.3 The Rudder and Propeller Force and Torque 50
Chapter 4 Implementation 52
4.1 Ocean Wave Modeling 52
4.1.1 Wave Modeling 52
4.1.2 Ocean Modeling 56
4.2 GPU Shading 61
4.3 Ship Modeling and Dynamics 64
4.3.1 Ship Modeling 64
4.3.2 Ship Dynamics 69
4.4 Integrated Simulation Loop 73
Chapter 5 Experimental Results 75
5.1 Ocean 75
5.2 Ship 79
5.3 System Integration with 6-dof Motion Platform 81
Chapter 6 Conclusions 84
References 86
Appendix 90
[1]D. M. Bourg, Physics for Game Developers: O''Reilly, 2002.
[2]M. Carlson, P. J. Mucha, and G. Turk, "Rigid fluid: animating the interplay between rigid bodies and fluid," ACM Transactions on Graphics (TOG), vol. 23, pp. 377-384, 2004.
[3]S. Clavet, P. Beaudoin, and P. Poulin, "Particle-based viscoelastic fluid simulation," Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 219-228, 2005.
[4]D. Enright, S. Marschner, and R. Fedkiw, "Animation and rendering of complex water surfaces," ACM Transactions on Graphics (TOG), vol. 21, pp. 736-744, 2002.
[5]N. Foster and R. Fedkiw, "Practical animation of liquids," Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 23-30, 2001.
[6]N. Foster and D. Metaxas, "Controlling fluid animation," Computer Graphics International, vol. 97, pp. 178-188, 1997.
[7]D. F. Young, B. R. Munson, and T. H. Okiishi, "Brief Introduction to Fluid Mechancis."
[8]Y. Liu, X. Liu, and E. Wu, "Real-time 3D fluid simulation on GPU with complex obstacles," Computer Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on, pp. 247-256, 2004.
[9]J. Stam, "Stable fluids," Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 121-128, 1999.
[10]N. Foster and D. Metaxas, "Realistic animation of liquids," Graphical Models and Image Processing, vol. 58, pp. 471-483, 1996.
[11]J. X. Chen, N. V. Lobo, C. E. Hughes, and J. M. Moshell, "Real-time fluid simulation in a dynamic virtual environment," Computer Graphics and Applications, IEEE, vol. 17, pp. 52-61, 1997.
[12]L. B. Lucy, "A numerical approach to the testing of the fission hypothesis," The Astronomical Journal, vol. 82, pp. 1013-1024, 1977.
[13]R. A. Gingold and J. J. Monaghan, "Smoothed particle hydrodynamics-Theory and application to non-spherical stars," Royal Astronomical Society, Monthly Notices, vol. 181, pp. 375-389, 1977.
[14]M. Müller, D. Charypar, and M. Gross, "Particle-based fluid simulation for interactive applications," Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation, vol. 159, 2003.
[15]S. Premože, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker, "Particle-based simulation of fluids," Computer Graphics Forum, vol. 22, pp. 401-411, 2003.
[16]D. R. Peachey, "Modeling waves and surf," Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pp. 65-74, 1986.
[17]S. Thon, J. M. Dischler, and D. Ghazanfarpour, "Ocean waves synthesis using a spectrum-based turbulence function," 2000, pp. 65-72.
[18]G. A. Mastin, P. A. Watterberg, and J. F. Mareda, "Fourier Synthesis of Ocean Scenes," Computer Graphics and Applications, IEEE, vol. 7, pp. 16-23, 1987.
[19]A. Fournier and W. T. Reeves, "A simple model of ocean waves," ACM SIGGRAPH Computer Graphics, vol. 20, pp. 75-84, 1986.
[20]J. Tessendorf, "Simulating ocean water," Siggraph Course Notes, vol. 2, 1999.
[21]D. Hinsinger, F. Neyret, and M. P. Cani, "Interactive animation of ocean waves," Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 161-166, 2002.
[22]K. S. M. Davidson and S. L.I., "Turning and Course Keeping Qualities of Ships," SNAME Transaction 1946.
[23]M. A. Abkowitz, "Lectures on Ship Hydrodynamics-Steering and Manoeuvrability," Report Hy-5, Hydro-and Aerodynamic Laboratory, Lyngby, Denmark, 1964.
[24]M. Hirano, "Calculation Method of Ship Maneuvering Motion at Initial Design Phase," J. SOC. NAVAL ARCHIT. JAPAN, vol. 147, pp. 144-153, 1980.
[25]M. Hirano, J. Takashina, and Y. Takaishi, "Ship turning trajectory in regular waves," Transaction of the West-Japan Society of Naval Architects, vol. 60, pp. 17-31, 1980.
[26]S. Inoue, M. Hirano, K. Kijima, and J. Takashina, "A Practical Calculation Method of Ship Maneuvering Motion," International Shipbuilding Progress, vol. 28, pp. 207-222, 1981.
[27]A. W. Browning, "A mathematical model to simulate small boat behaviour," SIMULATION, vol. 56, p. 329, 1991.
[28]G. B. Airy, "On the laws of the tides on the coasts of Ireland," London, Printed by R. and JE Taylor, 1845. The 2d ed. To which is added, A clear and succinct description of an engine, which fetcheth water out of the deep, and raiseth it to the height design''d, progressively, by the same motion. By E. Barlow, gent., 1845.
[29]J. W. J. Pierson, L. Moskowitz, O. Dept. of Meteorology and, and U. New York, A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of SA Kitaigorodskii: New York University, School of Engineering and Science, Dept. of Meteorology and Oceanography, 1963.
[30]D. E. Hasselmann, M. Dunckel, and J. A. Ewing, "Directional Wave Spectra Observed during JONSWAP 1973," Journal of Physical Oceanography, vol. 10, pp. 1264-1280.
[31]H. Mitsuyasu, F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda, and K. Rikiishi, "Observations of the Directional Spectrum of Ocean Waves Using a Cloverleaf Buoy," Journal of Physical Oceanography, vol. 5, pp. 750-760.
[32]O. M. Phillips, "On the generation of waves by turbulent wind," Journal of Fluid Mechanics Digital Archive, vol. 2, pp. 417-445, 2006.
[33]M. S. Longuet-Higgins, "The Distribution of Intervals between Zeros of a Stationary Random Function," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 254, pp. 557-599, 1962.
[34]H. Mitsuyasu, F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda, and K. Rikiishi, "Observations of the Directional Spectrum of Ocean Waves Using a Cloverleaf Buoy," Journal of Physical Oceanography, vol. 5, pp. 750-760, 1975.
[35]J. T. Kajiya, "The rendering equation," Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pp. 143-150, 1986.
[36]WikiPedia, "Fresnel equation."
[37]L. S. Jensen and R. Golias, "Deep-Water Animation and Rendering," Gamasutra September, 2001.
[38]M. B. Cline, "Rigid Body Simulation with Contact and Constraints," The University of British Columbia, 2002.
[39]D. Baraff, "An Introduction to Physically Based Modeling: Rigid Body Simulation unconstrained Rigid Body Dynamics," SIGGRAPH Course Notes, 1997.
[40]S. R. Buss, "Accurate and efficient simulation of rigid-body rotations," Journal of Computational Physics, vol. 164, pp. 377-406, 2000.
[41]E. Guendelman, R. Bridson, and R. Fedkiw, "Nonconvex Rigid Bodies with Stacking."
[42]M. C. Fang, K. W. Lin, and Z. H. Shu, "An Indigenous PC-Based Ship Simulator Incorporating the Hydrodynamic Numerical Model and Virtual Reality Technique," Journal of the Society of Naval Architects and Marine Engineers, vol. 23, pp. 87-95, 2004.
[43]B. V. Korvin-Kroukovsky and W. R. Jacobs, "Pitching and heaving motions of a ship in regular waves," Trans. SNAME, vol. 65, p. 590?32, 1957.
[44]R. Bhattacharyya, Dynamics of Marine Vehicles: Wiley, 1978.
[45]C. H. Kim, F. S. Chou, D. Tien, and E. Society of Naval Architects and Marine, Motions and Hydrodynamic Loads of a Ship Advancing in Oblique Waves: Society of Naval Architects and Marine Engineers, 1980.
[46]C.-D. Lee, "Impulse-Based Dynamic Simulation of Articulated Rigid Bodies with Aerodynamics," vol. Master. Taipei: National Taiwan University, 2006.
[47]S.-C. Wang, "System Design of VR-based Motion Simulatior for Wheeled Vehicle on Three Dimension Terrain Application," vol. Master. Taipei: National Taiwan University, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top