跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 21:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫松翰
研究生(外文):Sung-Han Wen
論文名稱:應用於60GHz室內無線通訊之互補式金氧半十億位元頻率鍵移接收發器之研製
論文名稱(外文):Design and Implementation of CMOS Gb/s FSK Transceiver for 60 GHz Indoor Wireless Communications
指導教授:汪重光汪重光引用關係
指導教授(外文):Chorng-Kuang Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:72
中文關鍵詞:注入鎖定振盪器可適性突波壓制技術注入鎖定單元
外文關鍵詞:injection-locked oscillatoradaptive spur reduction techniqueinjection-locked cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:619
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在60GHz附近,7 GHz的連續頻寬造就了超高速室內無線通訊的可能性。最近幾年來,許多操作於60GHz的重要電路已用CMOS製程製作完成,進而論證了低成本接收發器製作的可能。在60-GHz的系統中,除了前端電路和頻率合成器外,超高速的調變器與解調變器之研製亦是一項重要的議題。此論文呈現了一些應用於60GHz室內無線通訊系統的重要電路;其中包含了一個操作於60-GHz的除頻器和一個十億位元頻率鍵移接收發器。

一個60-GHz的注入鎖定除頻器已利用了0.13-μm CMOS製程製作完成。與並聯共振的方法相比,模擬結果顯示提出的功率匹配技巧可以增加15%的鎖定範圍。依據量測的結果,除頻器的自振頻率在30.4GHz,其在注入功率為3dBm的條件下可達到6GHz的鎖定範圍(10%);此電路在1.2V的偏壓下有8.8mW的功率消耗。
接下來,在發射機的部份;我們提出了利用混波式架構和動態注入鎖定技巧達到十億位元的操作速度和良好的頻帶外突波壓制;由量測結果可知,發射器可達到380ps的切換時間和8dB的突波壓制增益。此電路利用了0.13-μm CMOS製程製作完成;且在1.8V的偏壓下有51mW的功率消耗。

最後,一個十億位元頻率鍵移接收機亦利用了0.13-μm CMOS製程製作完成。與LC-tank延遲單元比較,提出的注入鎖定單元解決了傳統正交解調器所會遇到的延遲控制問題。根據模擬的結果,此接收器有424mV/GHz的解調常數;且在1.2V的偏壓下有20mW的功率消耗。
The contiguous bandwidth of 7GHz around 60GHz enables the realization of the ultra high-speed indoor wireless communications. In the recent years, many critical circuits at 60GHz have been fabricated in the CMOS technology to demonstrate the possibility of the low cost transceiver implementation. In addition to the front-end circuit and the frequency synthesizer, the ultra high-speed modulator and demodulator are also of main concern in 60-GHz systems. This thesis presents a 60-GHz frequency divider and a Gb/s FSK transceiver for 60 GHz indoor wireless communications.

A 60-GHz injection-locked frequency divider is implemented in a 0.13-μm CMOS technology. Compared with the shunt-peaking version, the proposed power-matched technique improves the locking range by 15% based on the simulation results. The measurement results show that the free-running frequency of the divider is 30.4GHz and the total locking range is 6GHz (10%) at input power of 3dBm while consuming 8.8mW from a 1.2V power supply.

The proposed mixer-based BFSK transmitter with injection locking technique achieves both 1Gbps operation speed and good out-band spur reduction. Measured settling time and spur reduction gain of the transmitter are 380ps and 8dB respectively while consuming 51mW from a 1.8V power supply. This transmitter is fabricated in a 0.13-μm CMOS technology.

A Gb/s FSK receiver is realized in a 0.13-μm CMOS technology. In Comparison with the LC-tank delay cell, the proposed injection-locked cell solves the critical delay-control problem of the conventional quadrature demodulator. The simulated demodulation constant of the receiver is 424mV/GHz while consuming 21mW from a 1.2V power supply.
Acknowledgement i
Abstract iii
Contents v
List of Figures viii
List of Tables x

1. Introduction . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . 3
1.3 Overview of thesis . . . . . . . . . . . . . . . 4
1.4 Reference . . . . . . . . . . . . . . . . . . . . . 5
2. A 60-GHz Frequency Divider in 0.13-μm CMOS Technology . . 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . 6
2.2 Design of the 60-GHz Frequency Divider . . . . . . . 8
2.2.1 Divider Topologies . . . . . . . . . . . . . . . . 8
2.2.2 Transmission Lines . . . . . . . . . . . . . . . 10
2.3 Experimental Results . . . . . . . . . . . . . . . 12
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Reference . . . . . . . . . . . . . . . . . . . . 15
3. Analysis and Modeling of Injection-Locked Oscillator . . . 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . 16
3.2 Adaptive Spur Reduction Technique . . . . . . . . 17
3.2.1 Gain and Linearity Trade-Off . . . . . . . . . . 17
3.2.2 Adaptive Spur Reduction Technique . . . . . . . . 18
3.2.3 Applications . . . . . . . . . . . . . . . . . . 21
3.3 Analysis of Injection-Locked Oscillator . . . . . . 22
3.3.1 Model of Injection-Locked Oscillator . . . . . . 22
3.3.2 Settling time Analysis . . . . . . . . . . . 23
3.3.3 Spur Reduction Analysis . . . . . . . . . . . . 27
3.4 Summary . . . . . . . . . . . . . . . . . . . . . 34
3.5 Reference . . . . . . . . . . . . . . . . . . . . 35
4. Gb/s FSK Transmitter in 0.13-μm CMOS Technology . . . 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . 36
4.2 Transmitter Architecture . . . . . . . . . . . . . 37
4.2.1 General Architecture . . . . . . . . . . . . . 37
4.2.2 Mixer-based FSK Transmitter with Injection Locking Technique . . . 39
4.3 Design and Analysis of Building Blocks . . . . . . . 41
4.4 Experimental Results . . . . . . . . . . . . . . . . 52
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Reference . . . . . . . . . . . . . . . . . . . . . 57
5. Gb/s FSK Receiver in 0.13-μm CMOS Technology . . . 58
5.1 Introduction . . . . . . . . . . . . . . . . . 58
5.2 Receiver Architecture . . . . . . . . . . . . . . 59
5.2.1 General Architecture . . . . . . . . . . . . . . 59
5.2.2 FSK Demodulator with Injection-Locked Cell . . . 60
5.3 Design and Analysis of Building Blocks . . . 63
5.4 Simulation Results . . . . . . . . . . . . . . . 67
5.5 Summary . . . . . . . . . . . . . . . . . . . . . 69
5.6 Reference . . . . . . . . . . . . . . . . . . . . 70
6. Conclusion . . . . . . . . . . . . . . . . . . . . 71
[1.1] Hiroyo Ogawa, “Application of mmW-based PHYs,” IEEE 802.15 Working Group for Personal Area Networks, Document IEEE 802.15-04/118r0, March 2004.

[1.2] E. K. Smith and J. W. Waters, Microwave Attenuation and Brightness Temperature Due lo the Gaseous Atmosphere – a Comparison of JPL and CCIR values, JPL Pub.
81-81, Aug. 1981.

[1.3] B. Razavi, "A mm-Wave CMOS Heterodyne Receiver with On-Chip LO and Divider,” ISSCC Dig. Tech. Papers, pp. 188-189, Feb. 2007.

[1.4] S. Emami et al, "A Highly Integrated 60GHz CMOS Front-End Receiver,” ISSCC Dig. Tech. Papers, pp. 190-191, Feb. 2007.

[1.5] C.H. Wang et al, "A 60GHz Low-Power Six-Port Transceiver for Gigabit Software-Defined Transceiver Applications", ISSCC Dig. Tech. Papers, pp. 192-193,
Feb. 2007.

[1.6] C. Lee and S.I. Liu, "A 58-to-60.4GHz Frequency Synthesizer in 90nm CMOS,” ISSCC Dig. Tech. Papers, pp. 196-197, Feb. 2007.

[1.7] IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c (TG3c); http://www.ieee802.org/15/pub/TG3c.html

[2.1] Behzad Razavi,"A 60-GHz CMOS Receiver Front-End", IEEE J. Solid-State Circuits, vol. 41, no. 1, pp.17–22, Jan. 2006.

[2.2] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18 μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp.259–262.

[2.3] H.-D.Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” in Proc. Eur. Solid-State Circuits Conf., Firenze, Italy,
Sept. 2002, pp. 823–826.

[2.4] H.Wu and A. Hajimiri, “A 19 GHz, 0.5mW, 0.35 μmCMOS frequency divider with shunt-peaking locking-range enhancement,”in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2001, pp.412–413, 471.

[2.5] Chinh H. Doan, Sohrab Emami, Ali M. Niknejad, and Robert W. Brodersen,”Millimeter-Wave CMOS Design”, IEEE J. Solid-State Circuits, vol. 40, no. 1,pp.144–155, Jan. 2005

[2.6] Cheung, T.S.D.; Long, J.R, ” Shielded passive devices for siliconbased monolithic microwave and millimeter-wave integrated circuits”, IEEE J. Solid-State Circuits, vol.41, no. 5, pp.1183–1200,May. 2006

[2.7] B. Razavi, “A study of injection locking and pulling in oscillators”, IEEE Journal of Solid State Circuits, vol. 39, pp. 1415-1424, Sep. 2004.

[2.8] Marc Tiebout, "A CMOS Direct Injection-Locked Oscillator Topology as High-Frequency Low-Power Frequency Divider", IEEE J. Solid-State Circuits, vol. 39, No. 7 pp. 1170–1174, July. 2004.

[3.1] E. Normann, “The inductance-capacitance oscillator as a frequency divider,”in Proc. IRE, vol. 24, Oct. 1946, pp. 799–803.

[3.2] A. Rofougaran et al., “A 900 MHz CMOS LC oscillator with quadrature outputs,”in IEEE ISSCC Dig. Tech. Papers, Feb. 1996, pp. 392–393.

[3.3] J. Kim and B. Kim, “A low phase noise CMOS LC oscillator with a ring structure,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2000, pp. 430–431.

[3.4] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380–1385, Oct. 1973.

[3.5] C.-C. Lin and C.-K. Wang, “A regenerative semi-dynamic frequency divider for mode-1 MB-OFDM UWB hopping carrier generation,” in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005, pp. 206–207.

[3.6] Jri Lee, “A 3-to-8-GHz Fast Hopping Frequency Synthesizer in 0.18-um CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 566-573, Mar. 2006

[3.7] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.

[3.8] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,”IEEE Journal of Solid-State Circuits, vol. 34, pp. 813–821, June 1999.

[3.9] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53,pp.1723–1727, Nov. 1965.

[4.1] Behzad Razavi,"A 60-GHz CMOS Receiver Front-End," IEEE J. Solid-State Circuits, vol. 41, no. 1, pp.17–22, Jan. 2006.

[4.2] T. Melly et al. ,"A 1.2V, 433MHz, 10dBm, 38% Global Efficiency FSK Transmitter Integrated in a Standard Digital CMOS Process," Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp. 179-182, May 2000.

[4.3] Michael H. Perrott et al. ,“A 27-mW CMOS Fractional-N Synthesizer Using Digital Compensation for 2.5-Mb/s GFSK Modulation,” IEEE J. Solid-State Circuits,vol. 32, no. 12, December 1997.

[4.4] S. Heinen et al ,“A 3.0 V 2 GHz transmitter IC for digital radio communication with integrated VCO’s,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.
1995, pp. 150–151.

[4.5] S. Heinen et al. ,“A 2.7 V 2.5 GHz bipolar chipset for digital wireless communication,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 1997, pp.
306–307.

[4.6] Behzad Razavi, RF Microelectronics, Prentice Hall, p.280, 1998.

[4.7] W. F. Egan, Frequency Synthesis by Phase Lock, New York: John Wiley, 1981.

[4.8] J. Gibbs and R. Temple, “Frequency Domain Yields Its Data to Phase-Locked Synthesizer,” Electronics, pp. 107-113, April 27, 1978.

[4.9] Jri Lee, "A 3-to-8-GHz Fast Hopping Frequency Synthesizer in 0.18-μm CMOS Technology," IEEE Journal of Solid-State Circuits, vol. 41, pp. 566-573, March 2006.

[5.1] Behzad Razavi,"A 60-GHz CMOS Receiver Front-End," IEEE J. Solid-State Circuits, vol. 41, no. 1, pp.17–22, Jan. 2006.

[5.2] V. Thomas, J. Fenk, and S. Beyer, "A one-chip 2GHz single superhet receiver for 2Mb/s FSK radio communication," in IEEE ISSCC Dig. Technical Papers, 1994, pp.42-43.

[5.3] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380–1385, Oct. 1973.

[5.4] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.

[5.5] B. Razavi, Design of Integrated Circuits for Optical Communications, 1st Ed.,McGraw-Hill, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top