跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游弼鈞
研究生(外文):Pi-Chun Yu
論文名稱:雙金屬水泥鎚頭之鑄造製程開發及其耐磨耗性
論文名稱(外文):Casting Process Development of the Bimetal Hammer and Its Abrasive Wear Resistance Property
指導教授:潘永寧
指導教授(外文):Yung-Ning Pan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:74
中文關鍵詞:雙金屬雙液澆鑄高鉻鑄鐵耐磨耗性熱處理
外文關鍵詞:BimetalHigh Cr cast ironHeat treatmentWear resistance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對雙金屬(高鉻鑄鐵—合金鋼)水泥鎚頭鑄件,建立其鑄造技術,並探討最佳熱處理條件及分析鎚頭之顯微組織(包含具耐磨耗性之頭部、具韌性之柄部及二者之界面區)及機械性質(包含硬度、衝擊值及耐磨耗性)。在實驗方法上,探討不同Destabilization溫度及回火溫度對於高鉻鑄鐵及合金鋼之顯微組織、硬度值、衝擊值及耐磨耗性之影響,以建立雙金屬水泥鎚頭之最佳熱處理條件,並以SEM及EDAX觀察碳化物之形態及分析雙金屬界面之組成。本研究之目的在於獲致優良硬度及耐磨耗性之高鉻鑄鐵頭部及優良韌性之合金鋼柄部,以期在實際應用時可獲致較傳統單合金高錳鋼鎚頭較長的使用壽命。
本研究採用底澆法將二種合金熔液連續澆注入鑄模內,在澆注完第一種合金熔液但並未完全凝固之前,即接續澆注第二種合金熔液,以得到雙金屬水泥鎚頭。針對熱處理製程而言,本研究所獲致之最佳熱處理條件為(900 ~ 1000)°C/2hr/強風冷卻/500°C/2hr。鎚頭柄部採用鎳鉻合金鋼,其鑄態顯微組織為麻田散鐵針狀組織,經熱處理後變態為回火麻田散鐵,而鎚頭頭部則採用高鉻白口鑄鐵,其鑄態顯微組織包含M7C3碳化物及沃斯田鐵,經熱處理後沃斯田鐵變態為回火麻田散鐵,並會析出細粒二次碳化物。柄部合金鋼與頭部高鉻鑄鐵兩者之界面接合良好,並無空孔或氧化物生成,且在部份區域有二相混合之情形。另,由磨耗試驗與衝擊試驗結果顯示,本研究所開發之雙金屬鎚頭具有良好之耐磨耗頭部與耐衝擊柄部,可取代傳統單合金高錳鋼水泥鎚頭。
This study intended to develop the casting method for the production of bimetal hammers which consist of Cr-Ni steel shank and high Cr cast iron head, to establish the optimal heat treatment conditions for achieving the desired microstructures, hardness and wear resistant property, and to analyze the characterizations of carbides precipitated and the interface between the aforementioned two alloys by using SEM and EDAX. The aim of this study is to attain a bimetal hammer which has a tough alloyed steel shank and a high wear resistant head, which can replace the traditional single alloy (high Mn steel) hammer with substantially increased service life.
A double-pour technique was employed to cast the bimetal hammer. A bottom-pour gating system with an overflow located at the intended interface between two alloys, together with a top open riser have been designed for this particular casting. Also, the optimal heat treatment conditions have been found to be (900~1000)°C/2hr/ FAC/500°C/2hr. The as-cast microstructures of the hammer head consist of proeutectic austenite dendrites and eutectic phases of M7C3 carbide and austenite. After heat treatment, most of the austenite transformed to martensite after quenching, which subsquently transformed to temper martensite after tempering. In addition, numerous small secondary carbides, which have been identified as M7C3, can also be observed within the original austenite domain. The as-cast microstructure of the hammer shank is martensite, which transformed to temper martensite after heat treatment. Furthermore, the analyses of the interface region reveal that not only a sound fusion between two alloys was achieved, but also little porosity and oxides were observed. The developed bimetal hammer exhibits good combined properties of a tough shank, 21 J/cm2, and a hard head, over 50HRC, which has much better wear resistance than the traditional high Mn steel hammer.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 4
2.1 雙金屬之鑄造方式 4
2.2 高鉻白口鑄鐵 4
2.2.1 前言 4
2.2.2 碳化物種類 5
2.2.3合金設計 6
2.2.4 凝固組織控制 9
2.2.5 熱處理製程 9
2.3 磨耗機制 11
第三章 實驗方法及步驟 19
3.1 研究目的 19
3.2 合金設計 19
3.3 流路系統設計 19
3.4 熱處理 20
3.4.1高鉻鑄鐵熱處理預實驗 20
3.4.2高鉻鑄鐵之熱處理參數探討 20
3.4.3雙金屬鎚頭之最佳熱處理條件探討 21
3.5 顯微組織觀察 21
3.6碳化物種類鑑定及界面元素分佈分析 21
3.7 機械性質分析 22
3.7.1 硬度值測定 22
3.7.2 衝擊試驗 22
3.7.3 耐磨耗試驗 22
第四章 結果與討論 26
4.1國外鎚頭鑄件分析 26
4.1.1 顯微組織分析 26
4.1.2 硬度量測 27
4.1.3 小結 27
4.2雙金屬鎚頭鑄造製程開發 27
4.2.1 初步流路系統設計 27
4.2.2 改良之流路系統設計 28
4.2.3 小結 29
4.3 高鉻鑄鐵熱處理預實驗 29
4.3.1顯微組織分析 29
4.3.2硬度量測 30
4.3.3小結 30
4.4高鉻鑄鐵之熱處理參數探討 31
4.4.1顯微組織分析 31
4.4.2硬度量測 31
4.4.3小結 32
4.5 雙金屬鎚頭之最佳熱處理條件探討 32
4.5.1 顯微組織分析 32
4.5.2 硬度量測 32
4.5.3 小結 33
4.6 衝擊試驗 33
4.7 磨耗試驗 33
4.8 高鉻鑄鐵之碳化物分析 34
4.8.1 碳化物形態 34
4.8.2 二次碳化物分析 34
4.9 雙金屬界面分析 35
第五章 結論 68
第六章 未來研究方向 69
參考文獻 70
1. J. L. Alcaraz, J. M. Martínez-Esnaola and J. Gil-Sevillano, “An Analytical Approach to the Stress Field in the Extrusion of Bimetallic Tubes,” ISIJ International, Vol. 33 , 1996, p. 2075.
2. M. Hashimoto et. al.,“Development of High-performance Roll by Continuous Pouring Process for Cladding,”ISIJ International, Vol. 32, 1992, pp. 1202-1210.
3. http://www.posuiji.cn/
4. Kenneth G. Budinski, Engineering Materials: Properties and Selection, 3rd ed., Prentice Hall, Englewood Cliffs, New Jersey, 1989, pp. 448-449.
5. Kenneth G. Budinski, Engineering materials: Properties and Selection, 3rd ed., Prentice Hall, Englewood Cliffs, New Jersey,1989, pp. 447-448.
6. Y. Matsubara, Lecture Notes, 2004, Taiwan.
7. Shoji Goto, Setsuo Aso and Yoshinari Komatsu, “High-temperature Strength of High Chromium White Cast Iron,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka Japan, August 16-20, 2002, pp. 33~47.
8. Mitsuo Hashimoto, “Development and Application of Multi-component White Cast Iron Rolls in Hot and Cold Rolling Mills,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 195~206.
9. U. S. Patent 1,245,552 , 1917.
10. British Patent 727,061, 1952.
11. Y. Geller, Tool Steels, Mir Publisher, Moscow, 1978, p. 186.
12. Tommy Nylen and David Collins, “Developments in Hot Strip Mill Roll Technology,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 11-21.
13. H.-Q. Wu, N. Sasaguri, Y. Matsubara and M. Hashimoto,” Solidification of Multi- Alloyed White Cast Iron: Type and Morphology of Carbides,” AFS Transactions, Vol. 104, 1996, pp.103-108.
14. Nguyen Van Tich, Doan Dinh Phuong, Phan Anh Tu and Hoang Thi Binh, “Selecting the Composition and Microstructure of Fe-Cr-C Alloys Working in Different Abrasion-Corrosion Media of Mine Slurry,” Proceedings of the 9th Asian Foundry Congress, Hanoi, Vietnam Foundry and Metallurgy Sci. & Tech. Association, October 15-18, 2005, pp. 291-296.
15. L. Nastac and D. M. Stefanescu, “Prediction of Gray-to-White Transition in Cast Iron by Solidification Modeling,” AFS Transaction, Vol. 103, 1995, pp. 329-337.
16. Robert E. Reed-Hill, Physical Metallurgy Principles, 3rd ed., PWS-KENT, Boston, 1992, 593-599
17. Graham Powell, “Improved Wear-resistant High-alloyed White Irons – A Historical Perspective,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 1-10.
18. G. Laird II, “Microstructures of Ni-hard I, Ni-hard IV and High-Cr White Cast Iron,” AFS Transactions, Vol. 99, 1991, pp. 339-357.
19. G. L. F. Powell, “Morphology of Eutectic M3C and M7C3 in White Cast iron Casting,” Metals Forum, Vol. 3, 1980, pp. 37-46.
20. Y. Matsubara, Y. Yokomizo, N. Sasaguri and M. Hashimoto, “Effect of Carbon Content and Heat-treating Condition on Retained Austenite and Hardness of Multi-component White Cast Iron Casting,” J. of JFS., Vol. 74, 2000, pp. 471-477.
21. F. Maratray and A. Poulalion, “Austenite Retention in High-Chromium White Irons,” AFS Transactions, Vol. 90, 1982, pp. 795-804.
22. 潘曉華,朱祖昌,“H13鋼壓鑄模具的表面改性”,艾福表面處理技術(上海)有限公司,2000。
23. G. Laird and G. L. F. Powell, “Solidification and Solid-State Transformation Mechanisms in Si Alloyed High-Chromium White Cast Iron,” Materials Transactions, Vol. 24A, 1993, pp. 981-988.
24. C. D. Lundin, K. K. Khan and D. Yang, “Effect of Carbon Migration in Cr-Mo Weldments on Metallurgical Structure and Mechanical Properties,” Welding Research Council Bulletin, No. 407, Dec., 1995, pp. 1-49.
25. F. Maratray, “Choice of Appropriate Compositions for Cr-Mo White Iron,” AFS Transactions, Vol. 79, 1971, pp. 121-124.
26. Jin Yu and C. J. McMahon, “Effects of Composition and Carbide Precipitation on Temper Embrittlement of 2.25%Cr-1%Mo Steel—Effects of Mn and Si,” Metallurgical Transactions A, Vol. 11A, No. 2, Feb., 1980, pp. 291-300.
27. S. Inthidech, et al., “Behavior of Hardness and Retained Austenite Druing Heat Treatment of Hypoeutectic High Chromium Cast iron with Alloying Elements,” Proceedings of the 9th Asian Foundry Congress, Hanoi, Vietnam Foundry and Metallurgy Sci. & Tech. Association, Oct. 15-18, 2005, pp.171-180.
28. P. Sricharoenchai, S. Inthidech, N. Sasaguri and Y. Matsubara, “Effect of Alloying Elements on Behavior of Hardness and Retained Austenite of Eutectic High Chromium Cast Irons,” AFS Transactions, Vol. 112, 2004, pp. 911-923.
29. R. A. Stevens and P. E. J. Flewitt, “Effect of Phosphorus on the Microstructure and Creep Properties of 2.25%Cr-1%Mo Steel,” Acta Metallurgica, Vol. 34, No. 5, May, 1986, pp. 849-866.
30. J. J. Lewandowski, C. A. Hippsley and J. F. Knott, “Effects of Impurity Segregation and Test Environment on Sustained Load Cracking of 2.25%Cr-1%Mo Steel,” Acta Metallurgica, Vol. 35, No. 8, Aug, 1987, pp. 2081-2090.
31. Taylor Lyman, Metals Handbook, 8th ed., Vol. 8: Metallography, Structures and Phase Diagrams, 1964, p. 404.
32. W. R. Thorpe and B. Chicco, Metallurgical Transactions A, Vol. 16A, 1985, pp.1541-1549.
33. J. T. H. Pearce, T. Chairuangsri and A. Wiengmoon, “Variation in the As-Cast Microstructure of 2.3%C-30%Cr Iron,” Proceedings of the 9th Asian Foundry Congress-Hanoi, Vietnam Foundry and Metallurgy Sci. & Tech. Association, October 15-18, 2005, pp. 303-311.
34. G. Laird II, “Some Comments on White Cast Iron Microstructures and Wear Properties,” AFS Transactions, Vol. 101, 1993, pp. 497-504.
35. O. N. Dogan and J.A. Hawk, “Three Types of Wear of 26Cr White Cast Iorns,” AFS Transactions, Vol. 106, 1998, pp. 625-631.
36. A. Sinatora, “Eutectic Nucleation of High Chromium Cast Iron,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 23~31.
37. Y. Matsubara, K. Ogi and K. Matsuda, “Eutectic Solidification of High-Chromium Cast Iron - Eutectic Structures and Their Quantitative Analysis,” AFS Transactions, Vol. 89, 1981, pp. 183-196.
38. K. Ogi , Y. Matsubara and K. Matsuda, “Eutectic Solidification of High-Chromium Cast Iron – Mechanism of Eutectic Growth,” AFS Transactions, Vol. 89, 1981, pp. 197-294.
39. Sung-Kon Yu and Y. Matsubara, “Effects of Carbide Morphology and Heat Treatment on Abrasion Wear Resistance of Chromium White Cast Iron,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 61-71.
40. R. L. Pattyn, “Heat Treatment of High-Cr White Irons,” AFS Transactions, Vol. 101, 1993, pp. 161-167.
41. J. T. H. Pearce, T. Chairuangsri and A. Wiengmoon, “Microstuctural Aspects of 30% Chromium Cast Iron,” Proceedings of the 9th Asian Foundry Congress-Hanoi, Vietnam Foundry and Metallurgy Sci. & Tech. Association, October 15-18, 2005, pp. 257-264.
42. S. Inthidech et. al., “Effect of Alloying Elements on Heat Treatment Behavior of Hypoeutectic High Chromium Cast iron,” Materials Transactions, Vol. 47, No. 1, January, 2006, pp. 72-81.
43. S. Inthidech et. al., “Behavior of Hardness and Retained Austenite in Heat Treatment of High Chromium Cast iron for Abrasive Wear Resistance,” AFS Transaction, Vol. 112, 2004, pp. 899-909.
44. K. H. Zum Gahr, Microstructure and Wear of Materials, Tribology Series, Vol. 10, Elsevier, Amsterdam, 1987, pp. 80-109.
45. K. G. Budinski, Surface Engineering for Wear Resistance, Prentice Hall, New Jersey, 1988, p. 16.
46. Ian R. Sare, “Alloy White Iron for Abrasive Wear Applications,” International Congress on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, Fukuoka, Japan, August 16-20, 2002, pp. 49-60.
47. J. R. Davis, Surface Engineering For Corrosion and Wear Resistance, Materials Park, OH, 2001, pp. 54-61.
48. J.L. Archard , “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, 1953, pp. 981-988.
49. G. Petzow, Metallographic Etching, American Society for Metals, Metals Park, Ohio,1978, p. 65.
50. N. E. Dowling, Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture and Fatigue, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey, 1998, pp. 145-147.
51. “Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” ASTM E23-91 in 1991 Annual Book of ASTM Standards, Section 3, Vol. 01- Metals- Mechanical testing; elevated and low-temperature tests, Philadelphia, PA, 1991, pp. 197-212.
52. Harmer E. Davis, George E. Troxell and George F. W. Hauck, The Testing of Engineering Materials, 4th ed., McGraw-Hill, 1982, pp. 221-243
53. “Standard Test Method for Wear Testing with a Pin-on –Disk Apparatus”, ASTM G99-90εl in 1990 Annual Book of ASTM Standards, Section 3, Vol. 02- Erosion and Wear; Metal corrosion, Philadelphia, PA, 1990, pp. 387-391.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top