跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭閔中
研究生(外文):Min-Chung Cheng
論文名稱:矽球太陽能電池之反射板系統設計與分析
論文名稱(外文):Design and Analysis Reflector System Of Spherical Si Solar Cell
指導教授:馬小康馬小康引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:31
中文關鍵詞:太陽能電池反射板能量輸出功率
外文關鍵詞:SiSolar cellreflectorenergypower output
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前太陽電池發展的瓶頸一項為效率,另一項為價格,在光電轉換的過程中,事實上,並非所有的入射光譜都能被太陽電池所吸收,並完全轉成電流,所以單一電池的最高效率約在25%左右。本篇論文中主要係針對反射板結合太陽能電池,提出增進其電功率輸出的方式。

設計矽球太陽能電池的反射板系統不但增加了矽球本身的受光區域,同時可以提高矽球太陽能電池的輸出電功率。在本文中設計出較佳的反射板幾何外型(Type B與Type C)並利用數學計算入射光線至矽球的形狀因子及受光面積。兩款新型的反射板系統(Type B與Type C)係利用太陽光入射至反射板上,藉由反射作用將太陽光線照射到矽球底部的陰影區,造成受光區增加,當光入射為900時受光面積可以接近100%。
The two major bottlenecks of developing solar cell are cost effective and solar cell efficiency. Not all incident light of spectrum is absorbed by solar cell and transformed to current completely in the fact. The maximum efficiency of the single solar cell is about 25% which is almost achieved to the theoretical value. The thesis mainly studies on spherical solar cell combining with reflector and mentions the way that can increase the power of electricity output.

It not only increases the region of incident light, but also increases the power of electricity output at the same time if designing the reflector system of spherical solar cell has be done. Design the better reflector (Type B and Type C) geometrically, calculate the Shape Factor of incident light to the Si spherical and the area of incident light with mathematics in the thesis. The two new types (Type B and Type C) of the reflector system are increased the region of incident light by using the incident light which reflects it to the bottom of the spherical. The incident light of region can be reached approximating 100% as the incident light is 90°.
目錄 ----------------------------------------------------Ⅲ
圖目錄 --------------------------------------------------Ⅴ
表目錄 --------------------------------------------------Ⅶ
誌謝 ----------------------------------------------------Ⅷ
論文摘要(中文) ------------------------------------------Ⅸ
論文摘要(英文) ------------------------------------------Ⅹ
符號說明 ------------------------------------------------ⅩⅠ


第一章 緒論 --------------------------------------------------------------------1
1.1 前言 ---------------------------------------------------------------------------1
1.2文獻回顧 ----------------------------------------------------------------------3
1.3研究動機與目的 -------------------------------------------------------------4
1.3-1 研究動機 --------------------------------------------------------------- 4
1.3-2 研究目的 --------------------------------------------------------------- 4

第二章 原理 ----------------------------------------------------------------------5
2.1 太陽能光電池介紹 ---------------------------------------------------------5
2.2太陽能光電池發電原理 ----------------------------------------------------5
2.2-1光伏特效應 ----------------------------------------------------------------7
2.3太陽能電池基本結構與種類 ------------------------------10
2.4太陽電池效率的基本限制 --------------------------------12
2.5超低成本太陽電池(矽球太陽能電池) ----------------------16
2.5-1矽球太陽能電池製造方法 ----------------------------------------------17

第三章 矽球太陽能電池反射板設計與分析---------------------18
3.1矽球太陽能電池反射板設計原理 --------------------------18
3.2設計一 ------------------------------------------------20
3.3設計二 ------------------------------------------------21
3.4設計三 ------------------------------------------------21

第四章設計結果分析----------------------------------------23
第五章 結論與探討 ----------------------------------------26
第六章 未來展望 ------------------------------------------28
參考文獻 -------------------------------------------------29
[1]. T. Maruyama, H. Minami,”Light trapping in spherical silicon solar cell module”, Solar Energy Materials & Solar Cells 79 (2003) 113–124
[2]. S. Omaea, T. Minemotoa ,”Crystal evaluation of spherical silicon produced by dropping method and their solar cell performance”, Solar Energy Materials & Solar Cells 90 (2006) 3614–3623
[3]. A. Morega, J. Ordonez,”Optical electrical design of spherical photovoltaic cells”, Solar Energy Materials & Solar Cells 90 (2006) 322–346
[4]. T. Minemotoa, M. Murozonob,” Design strategy and development of spherical silicon solar cell with semi-concentration reflector system” , Solar Energy Materials & Solar Cells 90 (2006) 3009–3013
[5]. T. Mizuta, T. Ikuta,”An optimum design of antireflection coating for spherical silicon solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 46–56
[6]. Y. Chen , C. Lee , ”Calculation of the optimum Installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method” , Solar Energy Materials & Solar Cells 90 (2006) 251-257
[7]. S. Erela , M. Akcilb , ”The behaviour of a typical single-crystal si solar cell under high intensity of electric field ”,Solar Energy Materials & Solar Cells 90 (2006) 582–587
[8] P. Manshanden , L. Geerligs , ”Improved phosphorous gettering of multicrystalline silicon ”, Solar Energy Materials & Solar Cells 90 (2006) 998–1012
[9] B. Richards , ”Luminescent layers for enhanced silicon solar cell performance: down-conversion”, Solar Energy Materials & Solar Cells 90 (2006) 1189–1207
[10] W. Dua , X. Liaoa ,”Hydrogenated nanocrystalline silicon p-layer in amorphous silicon n–i–p solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 1098–1104
[11] S. Ray, S. Mukhopadhyay , ”Studies on microstructure of silicon thin films and its effect on solar cells”, Solar Energy Materials & Solar Cells 90 (2006) 631–639
[12] H. Neitzerta , P. Spinilloa , ”Erratum to investigation of the damage as induced by 1.7MeV protons in an amorphous/crystalline silicon heterojunction solar cell”, Solar Energy Materials & Solar Cells 90 (2006) 659
[13] S. Zhao, E.ckelga, ”Optimization of solar absorbing three-layer coatings”, Solar Energy Materials & Solar Cells 90 (2006) 243–261
[14] K. Tsujinoa, M. Matsumuraa, ”Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst”, Solar Energy Materials & Solar Cells 90 (2006) 100–110
[15] M. Deshmukh, J. Nagaraju, ”Measurement of silicon and GaAs/Ge solar cell device parameters”, Solar Energy Materials & Solar Cells 89 (2005) 403–408
[16] S. Erela, ”The behaviour of a typical single-crystal Si solar cell under high intensity of electric field”,Solar Energy Materials & Solar Cells 90 (2006) 582–587
[17] L. Romanoa, R. Bastiani, ”Carrier mobility and strain effect in heavily doped p-type Si”,Materials Science and Engineering B 135 (2006) 220–223
[18] Z. Yu, M. Acevesa ,”Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride”, Thin Solid Films 515 (2006) 2366–2372
[19] K. Arlauskasa , ” Features of charge carrier transport determined from carrier extraction current in Si:H”, Journal of Non-Crystalline Solids 299–302 (2002) 375–379
[20] Y. Song, M. Park,”Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells”, Solar Energy Materials & Solar Cells 64 (2000) 225-240
[21] K. Shimakawa,”Photo-carrier transport in nanocrystalline silicon films”, Journal of Non-Crystalline Solids 352 (2006) 1180–1183
[22] T. Dylla, S. Reynold ,”Electron and hole transport in microcrystalline silicon solar cells studied by time-of-flight photocurrent spectroscopy”, Journal of Non-Crystalline Solids 352 (2006) 1093–1096
[23] I. Dewitt,”Fundamentals of heat and transfer 4/e”,(1996)
[24]蔡進,” 超高效率太陽電池” ,物理雙月刊物理雙月刊(2005年10月)(廿七
卷五期)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊